图 2:芯片上嵌入 hMO 的明场图像 (A)。沿施加的流动方向排列的神经胶质和神经元突起:TH(红色)、GFAP(绿色)、MAP2(洋红色)(B)。芯片上中脑微组织的生长曲线。通过混合效应分析和 Tukey 检验确定的统计学意义 *p<0.033、**p<0.002、***p<0.001(n=8-10,来自 3 个独立的类器官代)(C)。静态(上图)和动态(下图)培养的 hMO 的明场图像描绘了神经突生长的差异(左图)(D)。静态和动态培养的 hMO 的最大神经突生长率的箱线图。通过 Mann-Whitney 检验确定的统计学意义 *p<0.033、**p<0.002、***p<0.001。 (n >= 3,来自 3 个独立的类器官代)(F)。显微照片和 hMO 免疫组织化学染色切片的相应定量分析显示分化 35 天后凋亡标志物 caspase 3 存在显著差异。通过 Welch t 检验确定统计学意义 *p<0.033、**p<0.002、***p<0.001。柱状图和误差线表示平均值 ± SEM(n >= 3,来自 3 个独立的类器官代)(E、G)。分化 60 天后的完整中脑类器官:TH(红色)、GFAP(绿色)、MAP2(洋红色)、细胞核(蓝色)(H)。放大 60 倍的完整 hMO 核心的放大细节(H)(I)。MAP2 阳性神经元的免疫荧光染色(J)。 GFAP 阳性星形胶质细胞的免疫荧光染色 (K)。TH 阳性多巴胺能神经元的免疫荧光染色 (L)。中脑类器官中神经黑色素聚集体的明场图像 (右图) 和相应的 Fontana Masson 染色显示细胞内和细胞外神经黑色素聚集 (左图) (M)。
除了影响下丘脑和其他与生殖有关的脑区外,卵巢类固醇还对整个脑部、血清素通路、儿茶酚胺能神经元、基底前脑胆碱能系统以及海马结构(一个与空间记忆和陈述性记忆有关的脑区)产生广泛影响。因此,卵巢类固醇对情感状态和认知有可测量的影响,对痴呆症有影响。本综述讨论了两种作用;这两种作用似乎都涉及卵巢激素的基因组作用和非基因组作用的结合。首先,血清素系统的调节似乎与中脑缝中雌激素和孕激素敏感神经元的存在以及血清素神经元投射轴突的脑区中可能存在的非基因组作用有关。其次,卵巢激素在雌性大鼠 4 至 5 天的发情周期内调节海马 CA1 区突触的周转。雌二醇诱导新的兴奋性突触形成,涉及 N-甲基-D-天冬氨酸 (NMDA) 受体,而这些突触的下调涉及细胞内孕激素受体。一种新的快速放射免疫细胞化学方法通过标记和量化所涉及的特定突触和树突分子,使突触形成的证明成为可能。虽然 NMDA 受体激活是突触形成的必要条件,但抑制性中间神经元可能发挥关键作用,因为它们表达核雌激素受体-α (ER)。雌激素也可能局部调节突触形成的兴奋性锥体神经元中突触接触位点的事件。事实上,最近的超微结构数据显示,在海马主细胞、轴突、轴突末端和神经胶质突起上的部分树突棘内存在核外 ER 免疫反应。特别是,ER 在树突中的存在与突触形成的模型相一致,在该模型中,树突的假足长出以寻找新的突触接触,雌激素通过第二信使系统调节局部转录后事件。
分析了大鼠胚胎,胎儿和幼崽的抽象短生存,顺序和长期外胸他射线图,以检查丘脑网状核复合物神经元的起源,沉降模式,迁移途径和起源的起源时间。根据其计时结构,网状核分为中央,内侧和侧核。中央亚核是整个丘脑中最早产生的组成,其神经元超过50%在EL3天产生,而在E14第E14天产生了40%。侧面和内侧亚核的神经元的峰值产生是E14。在网状复合物的这两个成分之间存在一个侧(较早)至中间(后来的)神经遗传学梯度:只有大约12%的侧核神经元,但接近30%的内侧亚核神经元是在E15天产生的。由于侧向和内侧亚核显示在丘脑中发现的典型外部梯度,因此它们被认为构成一个单个细胞遗传学扇形。违反该秩序的早期产生的中央亚核中心核心被认为构成了一个单独的细胞遗传学部门。的观察结果表明,中央网状核的神经元起源于独特的神经上皮区域,即网状突起。在EL3上标有3H-胸腺苷的大鼠中,标记为重的细胞的迁移从该区域中追溯到该区域,并在随后的几天被杀死。外侧和内侧网状亚核的神经元起源于丘脑神经上皮的网状小叶。在EL4和EL5上标记为3H-胸腺苷的大鼠中,从该区域中追溯了标记为纺锤形的重型细胞的迁移,此后每天以每天的间隔杀死。在出生前,在产后大鼠中看到的网状丘脑复合物的神经遗传学梯度。