薄膜硅锂(TFLN)已成为实现高性能芯片尺度光学系统的有前途的平台,涵盖了从光学通信到微波光子学的一系列应用。此类应用程序依赖于将多个组件集成到单个平台上。然而,尽管其中许多组件已经在TFLN平台上进行了证明,但迄今为止,该平台的主要瓶颈是存在可调,高功率和狭窄的芯片激光器的存在。在这里,我们使用光子线粘结解决了这个问题,将光学放大器与薄膜锂锂反馈电路集成在一起,并证明了扩展的腔二极管激光器,产生了78 MW的高芯片上功率,侧模式抑制较大,大于60 dB,大于43 nm的宽波长可调节性。在短时间内的激光频率稳定性显示了550 Hz的超鼻中固有线宽,而长期记录表明,光子线键合激光器的高无源稳定性具有46小时的无模式跳动操作。这项工作将光子线粘结验证为用于高性能在芯片激光器上的可行集成解决方案,为系统级别的升级和瓦特级输出功率打开了路径。
合适的治疗指数对于药物的发现和开发至关重要,因为剂量稍有变化的窄治疗指数 (NTI) 药物可能会引起严重的药物不良反应或潜在的治疗失败。迄今为止,已有多项研究探索了 NTI 药物靶标的共同特征,并已将其用于识别潜在的药物靶标。然而,药物治疗指数与相关疾病之间的关联尚未被剖析,这对于揭示 NTI 药物机制和优化药物设计非常重要。因此,本研究选择了 NTI 药物数量最多的两类疾病(癌症和心血管疾病),并分析了相应 NTI 药物的靶标属性。通过计算药物靶标的生物系统概况和人类蛋白质-蛋白质相互作用 (PPI) 网络属性,并采用基于 AI 的算法,发现了两种疾病之间的差异特征,从而揭示了 NTI 药物在不同疾病中的不同潜在机制。因此,我们为这两种疾病确定了十个共同特征和四个独特特征,以区分 NTI 和 NNTI 药物靶标。这些计算发现以及新发现的特征表明,在避免这些疾病的治疗指数狭窄的临床研究中,应考虑靶标作为枢纽的能力以及人类PPI网络中靶标信号传导的效率,从而为药物发现和临床研究过程提供新的指导,并有助于评估癌症和心血管疾病的药物安全性。2021 作者。由 Elsevier BV 代表计算和结构生物技术研究网络出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creative-commons.org/licenses/by-nc-nd/4.0/)。
薄膜硅锂(TFLN)已成为实现高性能芯片尺度光学系统的有前途的平台,涵盖了从光学通信到微波光子学的一系列应用。此类应用程序依赖于将多个组件集成到单个平台上。然而,尽管其中许多组件已经在TFLN平台上进行了证明,但迄今为止,该平台的主要瓶颈是存在可调,高功率和狭窄的芯片激光器的存在。在这里,我们使用光子线粘结解决了这个问题,将光学放大器与薄膜锂锂反馈电路集成在一起,并证明了扩展的腔二极管激光器,产生了78 MW的高芯片上功率,侧模式抑制较大,大于60 dB,大于43 nm的宽波长可调节性。在短时间内的激光频率稳定性显示了550 Hz的超鼻中固有线宽。长期记录表明,光子线键键激光器具有58小时的无模式操作的高无源稳定性,频率漂移仅为4.4 MHz/h。这项工作将光子线粘结验证为用于高性能在芯片激光器上的可行集成解决方案,为系统级别的升级和瓦特级输出功率打开了路径。
标准 (i):少女峰-阿莱奇-比奇峰地区是阿尔卑斯山脉冰川最丰富的地区,拥有欧亚大陆西部最大、最长的大阿莱奇冰川。因此,它在冰川历史和持续过程(特别是与气候变化相关的过程)的背景下具有重要的科学意义。标准 (ii):少女峰-阿莱奇-比奇峰地区提供了广泛的高山和亚高山栖息地。存在生态演替的绝佳例子,包括阿莱奇森林独特的上树线和下树线。全球气候变化现象在该地区得到了特别好的体现,反映在不同冰川消退的速度上,这反过来又为持续的生态演替提供了新的基质。标准 (iii):少女峰-阿莱奇-比奇峰地区令人印象深刻的风景在欧洲文学、艺术、登山和高山旅游中发挥了重要作用。该地区的美学吸引了国际客户,并被全球公认为最值得游览的壮观山区之一。
3 准备工作 22 3.1 图灵机.................... ... . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..................................................................................................................................................................................................33 3.7 广义泡利可观测量....................................................................................................................................................................................34
图 1 | 单层 WSe 2 中的窄谱线。a ,沉积有 WSe 2 单层的器件示意图。b ,56 µ m × 56 µ m 范围内 1.525eV 至 1.734eV 能量范围内光致发光强度的等高线图。白色虚线标记了潜在的单层区域。c ,4.5K 时 WSe 2 单层中局部发射极的光致发光光谱,随着激光功率的增加,显示出不同的发射行为,主要峰位于 1.7167eV (P1) 和 1.7206eV (P2)。d ,P1 和 P2 的提取线宽,绘制为激发功率的函数。低激发功率的光谱显示 P1 和 P2 的分辨率受限线宽。e,P1 和 P2 的光子发射积分计数随着
相比之下,最近人们已使用基于 MHP 且不需要光刻的技术来生产大面积、高效且低成本的光电子器件和太阳能电池。[8] MHP 尤其适合用溶液处理法,因为它们易于在低温下合成、对缺陷具有耐受性、吸收能力强、在可见光和近红外范围内可调谐带隙能量、光致发光量子产率 (PLQY) 高、发射峰窄、传输特性好、非辐射复合中心密度低。[9–13] 例如,文献中已报道了高效的钙钛矿发光二极管 (PeLED)[2,14–17],其发射波长在可见光范围内。 2014 年报道的第一款 PeLED 的外部量子效率 (EQE) 约为 0.1%(混合甲基铵溴化铅,MAPbBr3)[18],其发展速度极快,迄今为止报道的 EQE 已超过 21%,可与最先进的 OLED 相媲美。[2,19]
弗吉尼亚州阿灵顿市——2024 年 12 月 3 日,全球航空航天领导者赛峰集团新成立的美国子公司赛峰防务与航天公司(赛峰 DSI)启动了一项战略计划,以加强对美国国防和航天领域的支持。这包括在美国多个州对制造业进行大规模投资,以实现多样化的技术能力。赛峰 DSI 重点关注解决下一代挑战,例如卫星推进和通信、地理空间人工智能和 GPS 拒绝导航,致力于维护国家主权以及保护我们的武装部队和太空作战准备。赛峰 DSI 正在扩展其数字设计、基于模型的系统工程 (MBSE)、模块化开放系统方法 (MOSA) 和先进制造能力,位于新罕布什尔州贝德福德的电光和红外系统工厂、位于科罗拉多州丹佛的最新小型卫星推进工厂均取得了显着增长;以及位于纽约州罗切斯特的赛峰联邦系统保证定位、导航和授时 (PNT) 设施 这些投资,加上位于佐治亚州诺克罗斯的测试和遥测业务,将提高赛峰 DSI 的生产能力并加强国内供应链。 赛峰 DSI 总裁兼首席执行官乔·博格西安表示:“通过利用赛峰集团在全球公认的专业知识并投资于美国工程和产品开发,赛峰 DSI 可以提供定制解决方案,以应对空中、陆地、海洋和太空领域快速发展的挑战。在此过程中,我们很自豪能够通过创造高科技就业机会来支持当地社区,并为有影响力的经济发展做出贡献。” 赛峰 DSI 新总部即将在弗吉尼亚州阿灵顿开业,其战略地位是加强与美国政府和工业界主要国防实体的伙伴关系,并加强对关键国家安全计划的合作与支持。
赛峰集团是一家国际高科技集团,业务涉及航空(推进、设备和内饰)、国防和航天市场。其核心宗旨是为更安全、更可持续的世界做出贡献,让航空运输更加环保、舒适和便捷。赛峰集团业务遍布全球,拥有 83,800 名员工,2022 年销售额达 190 亿欧元,无论是单独还是合作,在其核心市场中都占据着全球或地区领导地位。赛峰集团开展研发计划,以保持其研发和创新路线图的环境优先事项。赛峰集团在巴黎泛欧交易所上市,是法国 CAC 40 指数和欧洲斯托克 50 指数的成分股。详细信息:www.safran-group.com 新闻联系人 Catherine Malek:catherine.malek@safrangroup.com / +33 1 40 60 80 28 分析师和投资者联系人 Florent Defretin:florent.defretin@safrangroup.com / + 33 1 40 60 27 30 Aurélie Lefebvre: aurelie.lefebvre@safrangroup.com / +33 1 40 60 82 19
图 1 | 单层 WSe 2 中的窄谱线。a,沉积有 WSe 2 单层的器件示意图。b,56 µ m × 56 µ m 面积上 1.525eV 至 1.734eV 能量范围内光致发光强度的等值线图。白色虚线标记了潜在的单层区域。c,4.5K 时 WSe 2 单层中局部发射极的光致发光光谱,随着激光功率的增加,显示出不同的发射行为,主要峰位于 1.7167eV(P1)和 1.7206eV(P2)。d,P1 和 P2 的提取线宽,以激发功率为函数绘制。低激发功率的光谱显示 P1 和 P2 的线宽分辨率有限。e,随着激光功率的增加,P1 和 P2 的光子发射积分计数显示出超线性和亚线性行为