从源分离和机械治疗的非回收废物中获得的固体回收燃料(SRF)可以替代水泥厂中的碳焦,从而导致碳中立性。在意大利机械处理厂中进行了非回收和选定废物的SRF生产的生命周期评估(LCA),以估计每吨SRF产生的潜在环境影响。该分析将有助于评估由于最佳和最差的SCE Narios中可乐替代而获得的收益。评估了可能影响环境益处的变量的评估:SRF生物碳含量(以纸张和纸板的百分比)进行评估;从处理厂到水泥窑的运输距离;机械设施中使用的可再生能源。平均而言,大约35.6 kgco 2 -eq由SRF运输和生产阶段产生。这些影响通过可口可乐的替代而大大弥补,获得约-1.1 TCO 2 -EQ的净值避免了每吨SRF。平衡,由于SRF的产生和消费量,全球变暖潜力范围从约-542 kgco 2 -eq到约-1729 kgco 2 -eq。该研究建议使用SRF在水泥窑中替代可乐,也可以在较低的人口稠密的地区替代可乐,以减轻环境影响并在全球范围内实现碳中立性。
摘要。为有机光伏细胞结构提出了半球形壳形状,旨在增强光吸收和角度覆盖。三维有限元分析方法用于研究半球形壳形活性层中的吸收光谱。研究表明,与扁平结构化的设备相比,当传入光是横向电动(TE)和横向磁性(TM)极偏振时,所提出的结构可能会导致66%和36%的吸收改善。与先前报道的半微粒壳结构相比,所提出的半球形壳结构的吸收改善高达13%(TE)和21%(TM)。也提高了所提出的结构的角度覆盖范围,达到81度(TE)和82度(TM),这对于可穿戴的电子应用非常有用,在这些应用中,入射角可以随机变化。这些改进可以归因于更好的光耦合和通过设备半球形外壳形状使活跃层引导。
锂硫 (Li-S) 电池被视为近期下一代锂电池的有希望的候选材料之一。然而,这些电池也存在某些缺点,例如由于多硫化物的溶解导致充电和放电过程中容量衰减迅速。本文成功合成了硫/金属氧化物 (TiO 2 和 SiO 2 ) 蛋黄壳结构,并利用该结构来克服这一问题并提高硫阴极材料的电化学性能。使用扫描电子显微镜 (SEM)、透射电子显微镜 (TEM) 和 X 射线衍射 (XRD) 技术对制备的材料进行了表征。结果表明,使用硫-SiO 2 和硫-TiO 2 蛋黄壳结构后电池性能显著提高。所得硫-TiO 2 电极具有较高的初始放电容量(>2000 mA h g −1 ),8 次充电/放电循环后的放电容量为 250 mA h g −1 ,库仑效率为 60% ,而硫-SiO 2 电极的初始放电容量低于硫-TiO 2 (>1000 mA h g −1 )。硫-SiO 2 电极在 8 次充电/放电循环后的放电容量为 200 mA h g −1 ,库仑效率约为 70%。所得恒电流结果表明硫-TiO 2 电极具有更强的防止硫及其中间反应产物溶解到电解质中的能力。
风力涡轮机叶片的报废处理方式多种多样,从商业上可用的填埋到新兴的结构二次利用。这些报废处理方式回收叶片所含增强纤维、树脂和填充材料的全部价值的能力各不相同。商业技术(如水泥窑进料)和近乎商业化的技术(如气化)通过回收树脂和填充物作为能源的价值以及将纤维作为低质量增强材料或矿物的价值来妥协。新兴技术(如热塑性树脂)有望回收高质量的树脂和纤维。
。cc-by-nd 4.0国际许可在A未获得Peer Review的认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
摘要:Bivalve Molluscan壳的鱼被消耗了几个世纪。作为过滤器,它们可能会自然或通过排放人或动物污水来生物累积的一些微生物。尽管制定了法规,以避免壳鱼中的微生物污染,但仍会发生人类暴发。提供了概述显示它们对疾病的影响后,该评论的目的是强调在壳细菌中检测到的细菌或肠道病毒的多样性,包括新兴的病原体。在对可用方法及其局限性的批判性讨论之后,我们使用基因组学预测病原体的出现的技术发展的兴趣。在接下来的几年中,需要进行进一步的研究,并需要开发方法,以设计监视的未来并帮助风险评估研究,并最终目的是保护消费者并增强双壳软体动物壳的微生物安全性作为健康食品。
这项研究研究了Solen sp。与壳尺寸,新鲜重量和环境压力有关。总共分析了105个剃须刀蛤,重点是壳宽度,长度,高度和CI(CI-1和CI-2)。结果表明,壳的右侧(width-1,长度1)和左侧(width-2,长度-2)边之间存在显着差异,对配对测量值观察到强的正相关(宽度为0.996,长度为r = 0.993)。尽管这种对称性,但平均值和可变性的轻微不对称表明在生长过程中的环境影响。壳高度与CI(CI-1:R = -0.623; CI-2:R = -0.640)表现出很强的负相关性,表明垂直壳的生长与生物量的能量分配之间的权衡。多个线性回归分析表明,壳的高度和长度对新鲜重量产生了最大的负面影响,而CI对新鲜重量产生了积极影响(CI-1:27.6,CI-2:26.1)。这些发现将壳的生长不对称和CI与水质扰动和沿海环境压力相关联,例如盐度变化,沉积和富营养化。此外,与气候变化相关的因素,包括温度升高和海洋酸化,可能通过改变碳酸钙沉积和代谢能量分配来加剧这些影响。这项研究强调了Solen sp的潜在用途。作为环境健康的生物指导者,并强调了对长期监测和微观结构分析的未来研究的必要性,以更好地了解环境条件下的双壳弹性。
超弹性圆柱壳在加压下表现出的显著变形使其成为可编程充气结构的理想平台。如果施加负压,圆柱壳将弯曲,从而产生一系列丰富的变形模式,由于选择了超弹性材料,所有这些变形模式都可以完全恢复。虽然真空下的初始屈曲事件很容易理解,但这里探索了后屈曲状态,并确定了设计空间中发生耦合扭曲收缩变形模式的区域;通过仔细控制我们的均质壳的几何形状,可以控制收缩与扭曲的比例。此外,可以通过改变我们壳的圆周厚度来解锁作为后屈曲变形模式的弯曲。由于这些软壳可以从屈曲引起的显著变形中完全恢复,因此可以利用这些不稳定性驱动的变形来构建能够通过单个驱动输入进行可编程运动序列的软机器。
摘要:目前的实验研究旨在确定蜗牛壳颗粒聚酯复合材料的介电性能。蜗牛壳(SNS)材料被获取,洗涤,晒干,磨成粉末,并筛成300μm的筛分级。使用手上色方法制成的具有10、20、30、40和50 wt%的蜗牛壳颗粒的重量分数。X射线衍射仪(XRD)分析表明,蜗牛壳颗粒包含以下元素:C,O,Na,Mg,Al,Si,K和Ca。SEM揭示的蜗牛壳颗粒复合材料的表面形态证实了颗粒本质上是坚实的。TGA/DTA分析揭示了SNS颗粒复合材料的热稳定性。测试和分析的性能是:介电强度,介电常数,电阻率,水分含量和吸水能力。研究了填充变化对上述特性的影响,并用作评估复合材料的标准。分别分别为10 wt%,30 wt%和50 wt。%蜗牛壳颗粒聚酯复合材料观察到最大介电强度,介电常数和电阻率。还观察到50 wt%样品的水分含量和吸水值最高。它显示出吸水能力和水分含量的10-50 wt%的逐渐增加。蜗牛壳颗粒的测量特性 - 聚酯复合材料与某些标准绝缘子相当。因此,它们可以用作使用的常规标准绝缘子的替代介电。