抽象的物联网设备通常由电池提供动力:即使是可充电设备的设备,也必须更换。因此,在带有数十亿个IoT设备的未来,其电池的处置代表了一场迫在眉睫的环境灾难。无电池系统有可能解决此关键可持续性问题:通过依靠从环境来源收获的能量,从理论上讲,物联网设备可以持续运行,需要零维护并产生较少的浪费。然而,尽管近年来对无电池系统的研究已经盛开,但社区仍然缺乏公共测试床和明确的码数来对各种解决方案的性能进行基准测试。因此,在相同的条件下很少比较无电池的解决方案,这阻碍了人们对特定环境中表现最好的方法的全面理解,从而阻碍了工业的采用。为了填补这一空白,我们将第一步迈向了电子立方的设计:第一个完全自动化,开放和低成本的基准测试设施,用于无电池的物联网系统。我们介绍了电子立方体的设计和架构,展示了如何使用它来促进竞争,以评估由间歇性能源提供动力的设备上运行的解决方案的性能。
高能电子和 X 射线光子与诸如卤化物钙钛矿之类的光束敏感半导体的相互作用对于表征和理解这些光电材料至关重要。使用可以在纳米尺度上研究物理特性的纳米探针衍射技术,研究了电子和 X 射线辐射与最先进的 (FA 0.79 MA 0.16 Cs 0.05 )Pb(I 0.83 Br 0.17 ) 3 混合卤化物钙钛矿薄膜 (FA,甲脒;MA,甲铵) 的相互作用,使用扫描电子衍射和同步加速器纳米 X 射线衍射技术跟踪局部晶体结构随通量的变化。从中识别出钙钛矿晶粒,在 200 e − Å − 2 的通量后,与 PbBr 2 相对应的额外反射作为晶体降解相出现。这些变化伴随着相邻大角度晶粒边界上小 PbI 2 晶体的形成、针孔的形成以及从四方到立方的相变。纳米 X 射线衍射中的光子辐照也会引起类似的降解途径,表明存在共同的潜在机制。这种方法探索了这些材料的辐射极限,并提供了纳米级降解途径的描述。解决大角度晶粒边界问题对于进一步提高卤化物多晶薄膜的稳定性至关重要,尤其是对于易受高能辐射影响的应用,例如空间光伏。
另一种可能性是永动机,在这方面,星际飞船的速度是第二个问题,但第一个问题是如何设计这样一个物体,使其在没有任何燃料或外部阈值或触发器的情况下永远运动下去。用于星际旅行的最多的概念是量子泡沫或宇宙时空结构的“曲速引擎”,这个概念是创造这样的曲速引擎,它可以扭曲时空或在超空间中旅行。由于量子力学效应,量子泡沫是空间结构中每个小尺度上的时空波动。高维运输飞船也具有四维或更像太空中的宇宙立方的导航能力,可以探索和进入新的不同的宇宙,这个宇宙有完全不同的规律、物体、行星、恒星和形状,有可能出现与人类相比最具智慧的生命形式。黑洞、虫洞和超空间可以使这一切成为可能,但这方面需要超高速宇宙飞船,因为在“事件视界”甚至光也无法通过奇点,而奇点处的引力巨大,时间在这里终结。我担心,要前往数十亿万光年之外的星系、超级星系团、星际、多元宇宙或最终存在的全能宇宙,我们需要这样一种运输飞船,其速度是光速的几倍。因此解决方案可能是基于“超光速”粒子或基于第赫子粒子的航天器工程,这是一种假设的粒子,其速度总是比光速快。另外,另一种可能性是基于“中微子”的宇宙飞船进行星际或太空旅行,中微子是一种与电子非常相似的亚原子粒子,但不带电荷,质量可以忽略不计,可以假设为零。