Atlas 在竞赛中的主要优势在于其航程和超大载重能力均横跨战术/战略运输类别;该飞机能够运载运输和攻击直升机以及除主战坦克外的所有类型的作战车辆。与其他中型运输机相比,这种增加的载重能力(包括坡道在内的货舱容积为 340 立方米(12,007 立方英尺),最大有效载荷为 37,000 千克(81,571 磅),而 C-130J-30 的可用容积为 170.5 立方米(6,022 立方英尺),最大有效载荷为 21,772 千克(48,000 磅))可以通过减少数量来实现相同的升力来抵消其约 1.85 亿美元的高昂成本。这反过来可能会影响新加坡空军采用由 A400M 与阿莱尼亚马基 C-27J 或空客军用 C295 等较小平台组成的运输机队。
此外,到目前为止,这些测试报告未能充分描述设备运行过程中形成的主要或次要产物的排放,和/或在室内空间中引发的化学反应。关于电子空气净化器产生化学副产物(臭氧生成除外)的可能性的同行评审文献范围仍然有限,而公开的测试方法尚未充分解决副产物的形成问题。9,10 最广泛使用的副产物形成测试标准仅关注臭氧:UL 867 和 UL 2998。UL 2998 是更为严格的“零臭氧排放”标准(允许在 27 立方米至 31 立方米 [954 立方英尺至 1,095 立方英尺] 的标准测试室中臭氧含量最高为 5 ppb),而 UL 867 是较为宽松的标准(允许在标准测试室中臭氧含量最高为 50 ppb)。
摘要:这项开创性研究的重点是通过引入环保能源来改善挑战性南部巴布亚和马库地区的液化天然气分布。通过整合绿色供应链管理(GSCM)和多标准决策(MCDM)方法,液化天然气终端集线器的最佳位置被确定。利用AHP加权的元素方法,该研究确定Bintuni端口和Amahai端口是其各自区域中LNG终端最合适的位置。使用Lingo 20.0应用进行的建模结果揭示了有关LNG分布路线的复杂详细信息。例如,Amahai Hub港口路线有各种路线,Amahai-Tulehu Hub路线的需求最高为8,916,828立方米和14艘船。另一方面,Bintuni Hub港口路线展示了枢纽港口Bintuni-Pamako-Amamapare路线,总需求为4,760,410立方米和8艘船,强调了战略规划在满足这些地区能源需求方面的重要性。
摘要:住宅社区向可再生能源转型是实现能源部门脱碳、减少二氧化碳排放和减缓全球气候变化的第一步。本研究为开发由风能和太阳能供电的微电网提供了信息,该微电网可满足北德克萨斯州一个拥有 10,000 户家庭的社区的每小时能源需求;氢气被用作储能介质。结果分为两种情况:(a) 可再生能源仅满足社区的电力需求;(b) 这些能源既满足社区的电力需求,又满足社区的供暖需求(用于空间供暖和热水)。结果表明,这样的社区可以通过风能和太阳能装置的组合实现脱碳。能源存储需求在每户 2.7 立方米到每户 2.2 立方米之间。存储再生过程中存在大量耗散——接近当前年电力需求的 30%。该社区的全面脱碳(电力和热力)将减少约87,500吨二氧化碳排放。
图 1.1. 1950 年至 2050 年全球人口增长前景(百万人) 图 1.2. 2022 年至 2050 年全球各地区人口前景(百万人) 图 1.3. 2022 年至 2050 年各地区人口变化前景(百万人) 图 1.4. 2022 年至 2050 年城镇人口前景(百万人) 图 1.5. 1990 年至 2050 年劳动年龄人口占比趋势(%) 图 1.6. 2022 年至 2050 年老年抚养比前景(%) 图 1.7. 2022 年至 2050 年家庭数量前景(百万家庭) 图 1.8. 2022 年至 2050 年 GDP 前景(实际万亿美元,基准年 = 2022 年) 图 1.9.人均 GDP 展望,2022-2050 年(实际 1,000 美元,基准年 = 2022 年) 图 1.10. 区域 GDP 增量增长展望,2022-2050 年(实际万亿美元,基准年 = 2022 年) 图 1.11. 长期 GDP 增长展望,2022-2050 年(实际万亿美元,基准年 = 2022 年) 图 1.12. 长期人均 GDP 增长展望,2022-2050 年(实际 1000 美元,基准年 = 2022 年) 图 2.1. 激励天然气政策的因素 图 3.1. 一次能源需求展望,2022-2050 年(百万吨油当量) 图 3.2. 全球一次能源结构展望,2022 年和 2050 年(%) 图 3.3. 2022-2050 年全球一次能源需求展望(百万吨油当量) 图 3.4。2022-2050 年全球石油需求展望(百万吨油当量) 图 3.5。2022-2050 年全球煤炭需求展望(百万吨油当量) 图 3.6。2022-2050 年全球核能需求展望(百万吨油当量) 图 3.7。2022-2050 年全球水电需求展望(百万吨油当量) 图 3.8。2022-2050 年全球可再生能源需求展望(百万吨油当量) 图 3.9。2022-2050 年全球生物能源需求展望(百万吨油当量) 图 3.10。2022-2050 年按终端使用部门划分的全球电力需求展望(TWh) 图 3.11。2022-2050 年全球发电量展望(TWh) 图 3.12。全球发电装机容量展望,2022-2050 年(GW) 图 3.13. 氢气需求展望,2022-2050 年(MtH2) 图 3.14. 氢气需求展望,2022-2050 年(MtH2) 图 3.15. 氢气发电展望,2022-2050 年(MtH2) 图 3.16. 氢燃料输入展望,2022-2050 年(Mtoe) 图 3.17. 氢气进口展望,2022-2050 年(MtH2) 图 3.18. 能源相关排放展望,2022-2050 年(GtCO2e) 图 3.19. 各地区在全球能源相关排放中的贡献,2022 年和 2050 年(%) 图 3.20. 2022 年和 2050 年人均能源相关二氧化碳排放量(吨二氧化碳/人) 图 3.21. 二氧化碳排放量按成分分解(1990-2021 年和 2022-2050 年) 图 3.22. 全球二氧化碳排放量展望,2022-2050 年(GtCO 2 e) 图 3.23. 能源强度改善展望(%) 图 3.24. 一次能源消费增长分解(1990-2021 年和 2022-2050 年) 图 3.25. 区域人均一次能源消费展望,2022 年和 2050 年(油当量/人) 图 4.1. 全球天然气需求,2010-2022 年(十亿立方米) 图 4.2. 全球天然气需求按区域展望,2022-2050 年(十亿立方米) 图 4.3. 2022-2050 年各行业天然气需求展望(十亿立方米)图 4.4。2022-2050 年非洲发电量展望(太瓦时)图 4.5。非洲天然气需求展望,2022-2050 年(十亿立方米) 图 4.6。亚太发电量展望,2022-2050 年(TWh) 图 4.7。亚太天然气需求展望,2022-2050 年(十亿立方米) 图 4.8。中国天然气需求展望,2022-2050 年(十亿立方米) 图 4.9。中国发电量展望,2022-2050 年(TWh) 图 4.10。印度天然气需求展望,2022-2050 年(十亿立方米) 图 4.11。印度发电量展望,2022-2050 年(TWh) 图 4.12。东南亚发电量展望,2022-2050 年(TWh) 图 4.13。欧亚大陆天然气需求展望,2022-2050 年(十亿立方米) 图 4.14。欧洲天然气需求展望,2022-2050 年(bcm) 图 4.15。拉丁美洲发电量展望,2022-2050 年(TWh) 图 4.16。拉丁美洲天然气需求展望,2022-2050 年(bcm) 图 4.17。中东发电量展望,2022-2050 年(TWh) 图 4.18。中东天然气需求展望,2022-2050 年(bcm) 图 4.19。北美天然气需求展望,2022-2050 年(bcm) 图 4.20。美国发电量展望,2022-2050 年(TWh) 图 5.1。各地区天然气储量,2000-2022 年(tcm) 图 5.2。各地区天然气产量展望,2022-2050 年(bcm) 图 5.3。 2022-2050 年各地区天然气供应增长前景(十亿立方米)
在人类规模上,以及考虑到地下水的体积,相当于数千亿立方米,这种热水的自然资源被认为是取之不尽的,尤其是在同一储层中重新注入所产生的地热水。与普遍的看法相反,没有干燥资源的风险,因为水通过地质层次行走而连续变暖。
将电转气工艺与地下天然气储存相结合,可以有效地储存多余的电力以备后用。枯竭的碳氢化合物储层可以用作储存设施,但在这种地点储存氢气的实际经验有限。这里我们展示了一项现场试验的数据,该试验在枯竭的碳氢化合物储层中储存了 119,353 立方米的氢气与天然气混合。285 天后,氢气回收率为 84.3%,表明该工艺的技术可行性。此外,我们报告称微生物介导了氢气向甲烷的转化。在研究模拟真实储层的中观宇宙的实验室实验中,氢气和二氧化碳在 357 天内的 14 个周期内可重复地转化为甲烷(0.26 mmol l −1 h −1 的释放速率)。理论上,这个速率允许在测试储层中每年生产 114,648 立方米的甲烷(相当于 ~1.08 GWh)。我们的研究证明了氢存储的效率以及在枯竭的碳氢化合物储层中进行地质甲烷化的重要性。
该项目专注于可再生能源的最新发展,为埃及偏远地区的一小群人提供淡水,为一家小型反渗透 (RO) 海水淡化厂提供电力。这项工作的目的是估算一个水处理厂所需的最佳能源系统,该水处理厂在恒定的日负荷曲线下使用太阳能和风能等可再生能源之一生产 125 升/小时 (3 立方米/天)。首先,手动计算了反渗透厂每天生产 3 立方米淡水所需的电力,并使用陶氏水和工艺解决方案公司提供的水应用价值引擎 (WAVE) 软件完成了整个工厂的设计。其次,对于太阳能和风能,使用 PVSyst V6.75 软件和手动计算来估算每日能源产量。当然,太阳能和风能是清洁、免费和可再生的能源,这取决于场地位置。由于埃及拥有漫长的海岸线,因此强烈推荐将其作为可再生能源海水淡化厂的理想地点。本研究假定马特鲁港省为该工厂所在地。
• 清除数据中心部分约 200,000 立方米的填充材料。(能源园区开发将尽可能多地保留现场现有土壤材料,以减少项目的碳足迹——从现场清除约 6,300 立方米的材料)。 • 建造一个能源园区,包括一个电池存储设施,该设施由 828 个 6m x 2.5m 的高效集装箱电池存储单元组成,分布在园区各处,以及一个位于园区中心的变电站。 • 建造一个(最高)25 米高的数据中心,包括 8 层楼,建筑面积为 50,400 平方米。 • 创建一个通往现场的新 Rover Way 入口,并设有相关停车场,以及通往 Tide Fields Road 旁电池存储的单独通道。 • 排水工程,包括可持续排水方法。 • 在现场周围筑堤,用于遮蔽现场和与现场的交通,以及生物多样性和景观美化工程。 2.3 能源园区将拥有 1,000MW 的电池存储容量,用于存储来自国家电网的可再生能源。数据中心旨在通过现场可再生能源发电和/或绿色能源进口实现碳中和发展。