维尔纽斯已成为欧盟领先的网络安全城市,而维尔纽斯和考纳斯均被公认为顶级医疗技术中心,凸显了我们在高影响力领域的实力。尽管面临全球市场挑战,立陶宛初创企业仍表现出韧性和适应性,比许多地区同行表现出更高的稳定性和增长性。值得注意的是,外国独角兽和 10 亿欧元以上的退出公司也选择立陶宛作为主要运营基地,进一步提升了其在全球舞台上的声誉。
与俄罗斯安全问题相关的发展以及对美国政策和北约的影响可能会继续对国会产生影响。波罗的海国家是评估和应对这些挑战的核心对话者和合作伙伴。正如年度安全援助拨款和 2021 年制定的波罗的海安全倡议(见下文的安全伙伴关系和援助)以及近年来派往该地区的众多国会代表团和国会通过或提出的决议所表明的那样,国会广泛支持与波罗的海国家保持密切关系和安全合作。第 117 届国会对波罗的海国家的关注度不断提高,尤其是自 2022 年俄罗斯再次入侵乌克兰以来,这导致了两党立法的出台,该立法将扩大并增加美国向波罗的海国家提供安全援助的承诺。
约 75% 的热量是通过燃烧木质生物质产生的,其中最大份额是在立陶宛收获的,部分进口来自该地区的 Baltpool 平台。由于白俄罗斯大规模砍伐森林,该国从白俄罗斯进口的木质生物质有所增加。Baltpool 平台促进了更便宜的进口,这可能会引发人们对生物质贸易可持续性的担忧。现代生物能源可以在立陶宛的低碳未来中发挥重要作用。立陶宛的森林也是一个主要的碳汇,政府已经将其计入欧盟到 2030 年的减排目标。生物能源还可以平衡可变发电,主要是风能和太阳能,并且对于匹配峰值负荷能力仍将发挥重要作用,尤其是在寒冷的冬天。生物燃料也是减少运输部门排放的关键。
立陶宛脱离苏联后,集中式计量供应体系崩溃。该系统具有严格的等级制度,其中所有计量活动均受一套非自愿性国家标准 (GOST) 的监管。所有测量(测量仪器必须接受强制性要求)无一例外地都采用强制性的国家或部门验证。大多数计量从业人员(在计量导向办公室服务以及在工业领域工作)只能执行基本的计量活动——根据标准方法进行验证。虽然对资格水平没有严格的要求,但此类任务需要大量人力资源。计量从业人员接受过非常狭窄的专业培训;他们只能检查特定的测量方法,例如秤或压力计等。计量学家接受了短期培训课程,学习验证特定的测量仪器(校准之类的操作既不为人所知也不应用)。苏联体系的遗产如下:1)中央苏联计量研究所创建的方法和规范基础与西欧国家不同。2)没有科学机构来解决计量科学问题并进行协调。3)方法基础不连贯,水平低,无法追溯到更高级别的标准(以前的标准是根据更高级别的苏联标准进行验证的)。4)计量学家资质低。最大的挑战是缺乏愿意采用实践的计量学家
立陶宛脱离苏联后,中央计量供应体系瓦解。该体系等级森严,所有计量活动均受一套非自愿性国家标准 (GOST) 的监管。所有测量(测量仪器必须接受强制性检验)无一例外地都接受强制性国家或部门检验。大多数计量从业人员(计量局服务人员以及工业领域工作人员)只能执行基本的计量操作——根据标准方法进行检验。尽管对资质水平没有严格要求,但此类任务需要大量人力资源。计量从业人员接受过非常狭窄的专业培训;他们只能检查特定的测量装置,例如秤或压力计等。计量学家接受过短期培训课程,他们学习如何检验特定的测量仪器(校准之类的操作不为人所知,也不适用)。苏联体系的遗产如下:1)苏联中央计量研究所制定的方法和规范基础与西欧国家不同。2)没有科学机构来解决计量科学问题并进行协调。3)方法基础不连贯、水平低下,无法追溯到更高级别的标准(以前的标准是根据更高级别的苏联标准进行验证的)。4)计量人员资质低。最大的挑战是缺乏愿意采用实践的计量人员
摘要:立陶宛有一个地热异常,位于该国西南地区。此异常由位于立陶宛西部的两个主要地热复合物组成。第一个复合物的特征是pärnu -kemeri泥盆纪砂岩含水层,其表现出异常良好的流动性能。然而,该复合物中的储层温度最高可达45°C。第二络合物包括寒武纪砂岩储层。尽管这些寒武纪砂岩储层表现出高温,储层温度最高,达到96℃,但这些寒武纪砂岩储层的质量较低。这项研究重点介绍了高温寒武纪地热砂岩储层。该研究旨在对具有较高水生产率的现有碳氢化合物储层进行地质筛查。初始数据收集后,在机械框模型的帮助下采用数值建模来评估所选地点的地热潜力以进行商业开发。最终,该研究确定了前五名的站点,可以进一步为技术经济建模开发。
二氧化碳(CO 2)泄漏是一个紧迫的环境问题,是由各种工业过程引起的,尤其是与化石燃料的提取和存储相关的过程。在这些操作期间,CO 2的无意释放可能会对环境和人类健康产生不利影响[1]。CO 2泄漏可能是由于多个因素而发生的,包括井的完整性不足,地下存储库中的断层或断裂,以及运输管道中的失败[2-4]。在碳捕获和存储(CCS)的背景下,涉及捕获CO 2来自发电厂和工业设施的CO 2排放,并将其存储在地下,泄漏可能是由于存储现场选择不当,监测不良或注射或存储操作期间的人为错误而导致的[5]。将CO 2注入深盐水含水层为大规模和长期存储二氧化碳提供了巨大的潜力。这些含水层以其高存储能力和广泛的分布为特征,被认为是CO 2存储的最有希望的地质地层之一[6]。在世界范围内的CO 2隔离的潜在位置如图1。已经研究了波罗的海盆地中CO 2存储的不同方面,从孔隙尺度建模到基于仿真的存储评估[7,8],显示出明显的CO 2存储潜力。这些储层中存在故障和断裂在维持存储系统完整性和防止CO 2泄漏方面引入了挑战,请参见图2,其中显示了CO 2存储期间可能泄漏的概念图。先前的研究还表明,故障和断裂网络可以显着影响深盐水含水层内CO 2的迁移和遏制[2-4]。CO 2泄漏的后果是深远的,并且涵盖了环境,经济和公共卫生的影响。环境后果包括水体的酸化,
摘要:立陶宛位于波罗的海沉积盆地的东部,并在该国西南地区有一个地热异常。在异常内有两个主要的地热复合物,由寒武纪和泥盆纪含水层组成。寒武纪的形成由砂岩组成,砂岩的温度达到96℃(深度> 2000 m)。泥盆纪含水层由parnu – kemeri的未固结砂组成,储层温度高达46℃(深度> 1000 m)。从历史上看,已经研究了两种地层的地热能生产。在本文中,我们介绍了对两种编队的地热工作的详细文献回顾,包括过去,现在和一些可能的未来研究。本文介绍的研究强调了先前研究工作的关键发现,总结了研究差距,然后详细阐述了新兴技术在弥合研究差距并提高我们对立陶宛地热络合物的理解的可能应用。尽管这不是本文的主要目的,但本文还涉及开发2D/3D数值模型的重要需求,以量化不确定性,以评估立陶宛的地热潜力用于商业发展。这项研究还强调了扩展地热发育以通过重新利用高水生产井来耗尽碳氢化合物储层的可能性。因此,需要开发多物理学热力学 - 化学(THMC)模型来评估储层行为。此外,从文献综述中,可以得出结论,立陶宛地热含水层本质上是高盐水,温度变化导致储层上游和下游盐的沉积。文献还将THMC模型的潜在使用和开发描述为必须进行的未来工作的一部分。