b'by gr \ xc3 \ xb6bner基依据[FJ03]。相比之下,解决80个布尔二次方程的随机,非结构化的系统仍然是一个艰巨的挑战,在实践中尚未完成。饼干属于多元加密系统的第二类。为了减少签名的大小,其设计师使用特殊形状的多项式。每个(二次)公共多项式可以写入f + g \ xc3 \ x97 H,其中f,g和h是n个变量中的仿射形式。关键是在某些输入向量X上评估这一点需要在有限字段中通过非恒定体进行单个乘法。这是一个非常强大的结构:虽然(n + 1)(n + 2) / 2系数描述了通用的二次多项式,但A \ xe2 \ x80 \ x9c biscuit -style \ xe2 \ x80 \ x80 \ x80 \ x9d polynomial仅由3 n n n n + 1 coefficiations进行了充分描述。设计师观察到,与一般MQ问题相比,这种结构可以实现更好的攻击算法。在提交文档[BKPV23A]中,他们提出了一种简单的组合算法,该算法在n变量的n变量中求解饼干 - 式多项式系统,并在有限的字段上使用\ xcb \ x9c o q 3 n/ 4操作,并使用Q元素进行Q元素。这比详尽的搜索\ xe2 \ x80 \ x94要好得多。它需要\ xcb \ x9c o(q n)操作。在一般情况下,没有这种改进的组合算法,这是一个很大的暗示,即额外的结构使问题更容易。
简介量子通信网络在量子通信领域提出了革命性步骤(1,2)。尽管实际证明了量子密钥分布(QKD)(3-8),但向许多用户扩展标准的两用户QKD协议的差异已经阻止了大规模采用量子通信。到目前为止,量子网络依赖于一个或多个概率特征:受信任的节点(9-13)是潜在的安全风险;主动切换(14 - 17),限制了功能和连接性;最近,波长多路复用(18)具有有限的可伸缩性。量子通信研究的最终目标是,具有基于物理定律而不是计算复杂性的安全性,使得与当前的Internet相像,以实现广泛的连接性。为了实现这一目标,量子网络必须是可扩展的,必须允许使用不同硬件的用户必须与流量管理技术兼容,不得限制允许的网络拓扑,并且必须尽可能避免避免潜在的安全风险(如受信任的节点)。到目前为止,所有人都证明了QKD网络属于三个宽大的冠军。第一类是值得信赖的节点网络(9-12),其中假定网络中的某些或所有节点被认为可以免受窃听。在大多数实用的网络中,很少能相信每个连接的节点。此外,此类网络倾向于在每个节点上同时使用发件人和接收器硬件的多个副本,从而使成本越来越高。第二类是积极切换或“访问网络”的,其中只允许某些用户一次交换密钥(19)。同样,点对点网络网络在利基应用程序中很有用,并且已使用无源束分式(BSS)(20 - 22),活动
尽管已经对数百万个基因组进行了测序,但其中大多数是从少数物种(例如人,大肠杆菌和结核分枝杆菌)中测序的。结果,现有的基因组序列是高度冗余的。这就是Hunt等人的方式。(2024)压缩了7.86个细菌组件(TB),也称为Alltheberacteria,在分组系统发育相关的基因组后,将其分成78.5 GB(GB)(Bˇrinda等人(Bˇrinda等),2024)。所得的压缩文件无损地保留所有序列,但不能直接搜索。索引对于启用快速序列搜索是必需的。k-mer数据结构是序列索引的流行选择(Marchet等人,2021)。它们可以分为三类。第一类并不将K-MER与数据库序列中的位置相关联。这些数据结构支持会员资格查询或伪字符(Bray等人,2016年),但无法重建输入序列或报告基础对齐。Petabase量表的序列搜索使用所有此类方法(Edgar等人,2022; Karasikov等。,2024; Shiryev和Agarwala,2024年)。第二类将K-MER的子集与其位置相关联。找到K-MER匹配时,此类别中的算法回到数据库序列并执行基本对齐。大多数对齐器都这样工作。但是,由于数据库序列不能很好地压缩,因此这些算法可能需要很大的空间来存储它们。最后一个类别保留所有K-Mers及其位置。,2024)。此类别中的算法可以重建所有数据库序列而无需明确存储它们。尽管可以有效地压缩K-MER的位置(Karasikov等人,2020),他们仍然占用很大的空间。最大的无损K-MER指数由一些terabase组成(Karasikov等人压缩全文索引,例如FM索引(Ferragina和Manzini,2000)R-Index(Gagie等人。,2018年; Bannai等。,2020年; Gagie
印度尼西亚正向潜在的太空强国迈进:谁有权力? Ferera Ardine Jillian Naibaho 1* Prita Amalia 2 Danrivanto Budhijanto 3 1. 巴查贾兰大学法学院,跨国商法系,万隆,西爪哇 40132,印度尼西亚 2. 巴查贾兰大学法学院,跨国商法系基础设施法研究中心,万隆,西爪哇 40132,印度尼西亚 3. 巴查贾兰大学法学院,技术信息通信和知识产权法系,万隆,西爪哇 40132,印度尼西亚 * 通讯作者的电子邮件:ferera19001@mail.unpad.ac.id 摘要 印度尼西亚目前正计划在巴布亚比亚克建造一个太空港。这一发展是印度尼西亚向潜在太空强国迈进的触发因素。由于组织方面的缺陷,这一发展引发了批评。该机构是一个权威机构,负责监督所有与太空有关的努力。印度尼西亚航天局(LAPAN)已与国家航天改革与创新局(BRIN)合并,原因是担心印度尼西亚对太空活动的监督权力混乱。在印度尼西亚向潜在太空强国迈进的过程中,体制明确的重要性无疑将有助于印度尼西亚开展太空活动。本文采用比较方法,通过探索美国、欧盟和日本等其他航天机构的实践,寻找印度尼西亚潜在的航天机构形式。关键词:BRIN、太空港、太空强国、航天局 DOI:10.7176/JLPG/135-06 出版日期:2023 年 8 月 31 日 1. 简介 航天部门在现代社会活动效率和经济发展中发挥着越来越重要的作用。尽管需要相对较大的投资,但外层空间是经济增长的源泉之一。不断扩大的太空经济表明了这一点,它如何应对金融危机,以及该领域新商业活动的兴起。卫星技术在导航通信、气象学和地球观测中的应用鼓励了该技术在交通、自然资源管理、农业、环境和气候变化监测、娱乐等各个领域的应用,从而创造了新的市场(Maulana 和 Yulianti,2019 年)。空间技术应用的增长速度极快,符合实现掌握空间技术走向独立的趋势。从社会对空间技术使用日益增长的作用和依赖可以看出这一发展。对于大多数经济学家来说,技术进步被认为是发展和经济增长过程中最重要和决定性的资源。技术是生产要素的组合,以实现生产目标,包括与空间技术相关的产品。空间产品直接和间接地为印度尼西亚贡献收入。生产的产品涉及与印度尼西亚经济发展直接和间接相关的行业。空间活动带来的附加值前景巨大,因为其范围涵盖许多不同的领域和行业,并涉及多个参与者。加强空间活动对非空间部门的企业或参与者的优势和影响力不断增加,他们直接从空间服务中受益,间接从空间科学和技术的发展中受益(Shinta,2018)。太空港项目的启动标志着吸引投资建立国际火箭发射中心的关键里程碑。LAPAN 合作局局长 Chris Dewanto 报告说,土耳其与几个国家的财团一起表示有兴趣投资开发一个国际太空港,可能位于比亚克。这项努力不仅将通过基础设施进步推动经济增长,还将促进与初创企业的潜在合作,间接使经济受益(BBC News,2021 年)。总体而言,参与太空活动的国家可以分为三大类,即:第一类是“太空强国”,即在太空活动中处于先驱地位并表现出主动性的国家,例如美国和苏联。第二类是“潜在太空强国”,即在太空活动中表现出巨大潜力的国家,例如欧洲航天局 (ESA) 的成员国、日本、中华人民共和国、印度和巴西。第三类是“后来者”,通常是由发展中国家组成,他们对太空活动仍然持被动态度,作为太空活动成果的“使用者”仍然有限。太空港项目的启动,是吸引投资建立国际火箭发射中心的关键里程碑。LAPAN 合作局局长 Chris Dewanto 报道称,土耳其与多个国家的财团表示有兴趣投资开发国际太空港,可能位于比亚克。这一努力不仅将通过基础设施进步推动经济增长,还将促进与初创企业的潜在合作,间接使经济受益(BBC News,2021 年)。一般来说,参与太空活动的国家可以分为三大类,即:第一类是“太空大国”,即在太空活动中处于领先地位并表现出主动性的国家,例如美国和苏联。第二类是“潜在太空大国”,即在太空活动中表现出巨大潜力的国家,例如欧洲航天局 (ESA) 的成员国、日本、中华人民共和国、印度和巴西。第三,“后来者”一般指发展中国家,它们对航天活动仍持消极态度,作为航天成果的“使用者”还很有限。太空港项目的启动,是吸引投资建立国际火箭发射中心的关键里程碑。LAPAN 合作局局长 Chris Dewanto 报道称,土耳其与多个国家的财团表示有兴趣投资开发国际太空港,可能位于比亚克。这一努力不仅将通过基础设施进步推动经济增长,还将促进与初创企业的潜在合作,间接使经济受益(BBC News,2021 年)。一般来说,参与太空活动的国家可以分为三大类,即:第一类是“太空大国”,即在太空活动中处于领先地位并表现出主动性的国家,例如美国和苏联。第二类是“潜在太空大国”,即在太空活动中表现出巨大潜力的国家,例如欧洲航天局 (ESA) 的成员国、日本、中华人民共和国、印度和巴西。第三,“后来者”一般指发展中国家,它们对航天活动仍持消极态度,作为航天成果的“使用者”还很有限。
1. 关于院长办公室(研究与发展) 03 2. 新加入教职员工的信息 05 2.1 从其他机构向 IIT(ISM) Dhanbad 转移正在进行的项目/咨询 05 2.2 教职员工研究计划补助金 05 2.3 设立研究实验室的特别补助金 10 2.4 合作研究支持计划 11 3. 资助研究项目 13 3.1 提交提案 13 3.1.1 制定项目提案 13 3.1.2 申请提交提案的认可函 14 3.2 资助机构接受后的项目运作 14 3.2.1 项目启动 14 3.2.2 将资金记入项目账户 15 3.2.3 提交进度报告 15 3.2.4 支出报表和使用证明 15 3.2.5项目完成报告 15 3.2.6 项目收尾 15 4. 有关咨询/EDP/测试项目的一般信息 16 愿景 16 使命 16 序言 16 定义 16 4.1 咨询/EDP/测试项目建议书 18 4.2 咨询/EDP/测试项目员工招聘 19 4.3 支付酬金(针对咨询/EDP/测试项目) 20 4.4 咨询收尾 20 4.4.1 学院费用的分配 20 4.4.2 有关咨询/EDP/测试项目的一般准则 21 4.5 测试项目 22 4.6 标准条款和条件 22 4.7 咨询项目建议书提交 31 5. 专业发展基金(PDF) 32 6. 研发/咨询/EDP/测试项目的招聘 33 7. 研究实习计划 34 7.1 第一类:BTech 暑期/冬季研究实习计划 34 7.2 第二类:研究生(仅适用于 MA/MSc/MTech/MBA)暑期/冬季研究实习计划
合流超几何方程又称库默尔方程,是物理、化学和工程学中最重要的微分方程之一。它的两个幂级数解分别是库默尔函数 𝑀 ( 𝑎, 𝑏, 𝑧 )(通常称为第一类合流超几何函数)和 e 𝑀 ( 𝑎, 𝑏, 𝑧 ) ≡ 𝑧 1 − 𝑏 𝑀 ( 1 + 𝑎 − 𝑏, 2 − 𝑏, 𝑧 ),其中 𝑎 和 𝑏 是微分方程中出现的参数。第三个函数是 Tricomi 函数 𝑈 ( 𝑎, 𝑏, 𝑧 ),有时也称为第二类合流超几何函数,也是常用的合流超几何方程的解。与常规程序相反,在寻找合流超几何方程的两个线性独立解时,必须考虑所有这三个函数(以及更多函数)。当 𝑎、𝑏 和 𝑎 − 𝑏 为整数时,有时会出现其中一个函数未定义,或者其中两个函数不是线性独立的,或者微分方程的一个线性独立解与这三个函数不同的情况。这些特殊情况中的许多恰好对应于解决物理问题所需的情况。尽管有 NIST 数学函数数字库等权威参考资料,但这仍导致人们对如何处理合流超几何方程产生了很大的困惑。在这里,我们仔细描述了必须考虑的所有不同情况,以及合流超几何方程的两个线性独立解的显式公式。正确求解合流超几何方程的过程总结在一个方便的表格中。作为示例,我们使用这些解来研究氢原子的束缚态,纠正教科书中的标准处理。我们还简要考虑了截止库仑势。我们希望本指南能够帮助物理学家正确解决涉及合流超几何微分方程的问题。
全球心力衰竭(HF)的日益增长的人需要创新的方法来早期诊断和分类心肌功能障碍。近几十年来,非侵入性传感器的技术具有明显的高级心脏护理。这些技术简化研究,帮助早期检测,确定血液动力学参数并支持评估心肌性能的临床决策。本讨论探讨了经过验证的增强,挑战和心力衰竭和功能障碍建模的未来趋势,所有这些都基于使用非侵入性传感技术。这种方法的综合解决了现实世界中的复杂性,并预测心脏评估中的变革性转变。在五个数据库中进行了全面搜索,包括PubMed,Web of Science,Scopus,IEEE Xplore和Google Scholar,以在2009年至2023年3月之间发表的文章。目的是确定通过基于比较标准的评级方法实现的研究项目,以表现出卓越的质量评估其拟议方法论。目的是指出具有可比目标的独特特征,这些特征将这些项目与其他项目区分开。鉴定出用于诊断,分类和表征心力衰竭,收缩期和舒张功能障碍的技术,包括两个主要类别。第一个涉及与患者的间接相互作用,例如ballist摄影图(BCG),阻抗心脏造影术(ICG),光摄影学(PPG)和心电图(ECG)。这些方法转化或传达心肌活性的影响。第二类包括基于成像工具的非接触式感应设置,例如心脏模拟器,其中心肌性能的表现通过培养基传播。现代的非侵入性传感器方法主要是针对家庭,远程和连续监测心肌性能量身定制的。这些技术利用机器学习方法,证明了令人鼓舞的结果。算法评估的中心是如何选择临床终点,在评估这些方法的效率方面表现出了有希望的进展。
一、引言 互联网对人们的日常生活和工作产生了重大影响。最近的研究表明,人工智能(AI)已经导致了许多科学技术领域的进步,即基于人工智能的医学、基于人工智能的交通和基于人工智能的金融。人工智能时代已经到来。安全作为最大的关注点之一,对于发展可持续、有弹性和繁荣的互联网生态系统具有重要意义。然而,网络安全仍然面临着许多具有挑战性的问题,例如入侵检测、隐私保护、主动防御、异常行为、高级威胁检测等。此外,许多威胁变体不断出现和蔓延。人工智能辅助的自适应方法有望解决这些安全问题。共同考虑人工智能与网络安全之间的交织性质是推动未来安全互联网的关键因素。IEEE A CCESS 关于网络安全中的人工智能技术及相关问题的特别章节旨在将研究人员聚集在一起,传播他们在人工智能相关安全和隐私理论分析领域的发现,同时推动在网络安全人工智能背景下与相关工程领域的潜在合作。征文通知引起了科学界的极大热情,并收到了大量投稿。其中,经过至少两名独立审稿人的彻底审查,30 篇文章被接受收录到这个特别章节中。这些被接受的文章大致可以分为三类:第一类,有十篇文章,主要解决网络安全检测问题。第二类,由另外十篇文章组成,解决数据隐私保护和身份验证问题。最后,第三类,包括最后十篇文章,重点关注不同工业应用中基于人工智能的网络安全。在第一类中,Zeadally 等人的文章“利用人工智能能力提高网络安全”探讨了人工智能在改进网络安全解决方案方面的潜力。D'hooge 等人的文章“基于 20 年入侵检测数据的监督学习者的分类难度”通过对涵盖 20 年数据生成的公共数据集进行评估,调查了监督机器学习方法在越来越困难的条件下对网络入侵检测数据的分类。
从伦理到法律:为何、何时以及如何监管人工智能 Simon Chesterman 1 (0000-0002-3599-4573) 1 新加坡国立大学。本章借鉴了《我们,机器人?监管人工智能和法律的局限性》(剑桥大学出版社,2021 年)中更详细考虑的材料。这是草稿章节。最终版本将在 David J. Gunkel 编辑的《人工智能伦理手册》中提供,即将于 2023 年由 Edward Elgar Publishing Ltd. 出版。未经出版商进一步许可,不得将材料用于任何其他目的,并且仅供私人使用。摘要(150 字)过去十年,各国、行业、政府间和非政府组织提出了大量指南、框架和原则来解决人工智能伦理问题。这些不同的努力促成了关于哪些规范可以管理人工智能的广泛共识。在确定如何实施这些规范——或者它们是否必要方面投入的精力要少得多。本章重点关注道德与法律的交汇,特别是讨论为什么需要监管、何时应进行监管变更以及监管在实践中如何发挥作用。法律改革的两个具体领域涉及人工智能的武器化和受害化。针对通用人工智能的监管尤其困难,因为它们面临许多“未知的未知数”,但随着 2023 年 ChatGPT 等大型语言模型的传播,无法控制或无法遏制的人工智能的威胁得到了更广泛的讨论。此外,还需要禁止某些以越来越逼真的机器为受害者的行为——或许可以与动物虐待法相媲美。关键词(6 个关键词):人工智能;道德;法律;监管;市场;合规近一个世纪前,科幻小说作家艾萨克·阿西莫夫 (1942) 想象了一个机器人成为日常生活不可或缺的一部分的未来。他后来回忆说(1982 年,第 9-10 页),当时大多数机器人故事都属于两种类型之一。第一类故事是机器人威胁论:技术创新以《弗兰肯斯坦》的传统反抗其创造者,但其影响至少可以追溯到希腊神话普罗米修斯,这是玛丽·雪莱 1818 年小说的副标题。第二类故事不太常见,认为机器人是悲情的——可爱的创造物被他们的主人当作奴隶对待
超越自动化的工作。Willcocks (2020) 试图消除当前整个就业自动化浪潮中围绕的炒作恐惧叙事。工作岗位既会被创造,也会被丢失。他表示,会出现混乱,但会有时间进行调整。有帮助的是,全球人工智能伙伴关系 (2020) 提供了一份全面清单,列出了人工智能可能在取代、补充、主导、增强、划分或重新人性化工作方面产生的潜在影响。也许所有这些都会在不同工作领域、不同时间在某种程度上发生。也许有些工作将保持基本不变。因此,人工智能对工作(包括专业工作)的可能影响仍然存在争议且难以预测。可能的情况是预测特定工作领域的影响。在此背景下,这篇关于人工智能和工作特刊的概念论文的目的是考虑人工智能对学术图书馆员专业工作的潜在影响。本文将自己定位在两类文献中,作为进行分析的视角。第一类是关于专业能力的丰富 LIS 文献。这类文章通常由从业者和教育工作者撰写,详细描述了执行新专业任务所需的技能和知识。第二类是来自职业社会学的更具批判性和理论性的工作。本文的预期贡献是使用这些视角来分析在图书馆工作中采用不同人工智能方法的可能性,主要是在知识发现的关键领域。本文还试图探索这些视角如何相互关联以及如何一起使用。在构建本质上是概念探索的内容时,作者参考了他之前使用职业理论分析职业变化事件的研究(Cox & Corrall, 2013; Cox, Gadd, et al., 2019; Cox, Kennan, et al., 2019; Cox, Pinfield, & Rutter, 2019; Verbaan & Cox, 2014),更具体地说,参考了他对信息环境中人工智能应用的实证研究(Cox, 2021; Cox, Gadd, et al., 2019; Cox, Kennan, et al., 2019; Cox, Pinfield, & Rutter, 2019)。由于作者更熟悉英国学术图书馆的环境,因此对这一背景的评论更有信心,但大部分逻辑也可能适用于其他地区。