2019年第132号公共法案更新了《动物行业法》(1988年第466号法案),要求在2024年12月31日开始在密歇根州出售的贝壳鸡蛋。这种新需求不适用于出售壳鸡蛋,这些蛋鸡蛋是农场少于3,000个卵子母鸡的产物。一般而言,该法律禁止企业主在这种状态下(或应该知道)在这种状态下出售任何贝壳鸡蛋是鸡蛋的产物的产物,该鸡蛋的产物与无笼子的要求不一致。法律对出售壳鸡蛋的任何企业主承担责任,以确保鸡蛋满足州的要求。《动物行业法》第287.746章中概述了无笼外壳系统的具体细节。这些细节指定除法律中概述的参数外,必须在室内环境中自由漫游。农场员工必须能够在母鸡的可用地面空间内为母鸡提供护理。对于室内和室外环境,必须提供母鸡的富集,使它们能够表现出自然行为;在环境中,笼子系统通常被描述为电池笼,菌落笼,丰富的笼子,丰富的菌落笼子或类似于这些系统的任何笼子系统。法律还禁止操作员每天或大部分时间都以阻止他们躺着,站起来,完全伸出四肢或自由转身的方式,在一天中或大部分时间里束缚或限制母鸡。该法律不适用于液体或煮熟的鸡蛋产品。此外,除非无笼外壳系统以外的其他外壳,也不能限制在外壳中,或者少于每只母鸡的可用地面空间量少于“无笼式生产的住房指南”中的“动物饲养指南”中的“动物饲养指南”,用于美国鸡蛋羊群,“ 2017年版,” 2017年,《联合蛋生产商》,由联合蛋生产商出版。第132号公共法案中的新要求是针对贝壳鸡蛋的,这意味着将其卵子形式的整个卵子卵子形式用于人类食品,它来自雌性的鸡,火鸡,鸭,鹅或几内亚禽,以生产鸡蛋的目的。总的来说,该部门的期望是要出售该法律约束的壳鸡蛋的企业主必须从供应商那里获得书面确认,即鸡蛋是在满足密歇根州无笼需求的环境中产生的。该部门应根据该部门的要求提供确认。有关更多信息和经常询问的问题的答案,请访问www.michigan.gov/mdard/food-dairy/foodlaw/cage-free-egg-law。
1949 年,戈莱(Golay)[1-4]发现了两种重要的纠错码。一种是二进制码,现用符号 1[24,12,8] 表示,由 2 12 = 4096 个 24 个字符(每个字符为 0 或 1)的码字组成,码字之间的最小距离为 2/8;另一种是三元码,用符号 [12,6,6] 表示,由 3 6 = 729 个 12 个字符(每个字符为 0、1 或 2)的码字组成,码字之间的最小距离为 6。3 在被发现后的几十年里,这些代码推动了编码理论和数学的重大进步。在编码理论中,戈莱码是唯一在有限域上可以纠正码字中多个错误的完美代码。 4 在数学中,二进制 Golay 码导致了 24 维 Leech 格子的发现 [5],这种格子提供了该维度上最密集的全同球体堆积 [6](已知的其他此类堆积的唯一维度是 8)。此外,在群论中,正如 Preskill [4] 所说,Golay 码启动了一系列事件,这些事件导致了上个世纪后期对有限群(特别是“零散”群)的完整分类。量子计算的出现以及由此产生的对量子纠错的兴趣,重新引起了人们对古典密码学的兴趣,因为人们意识到后者的许多结果可以改编并用于
我们开发了一种简单的方法来制造微笼和笼状肿瘤球体,用于基于微流控芯片的检测。微笼装置由一系列蜂窝状隔间组成,底部有一层交联和琼脂糖涂层的明胶纳米纤维,顶部有一个 200 μm 孔径的网格。U87-MG 单细胞分散在网格中,孵育后肿瘤球体被限制在每个笼子隔间中。正如预期的那样,肿瘤球体以相同的大小一个接一个地分布在每个隔间中,并且在隔间内生长。球体的最终尺寸受到扩散和限制的限制。如果笼子的高度较小,则肿瘤下方的纳米纤维层可能会因生长中的肿瘤的机械应力而发生偏转。如果笼子的高度很大,肿瘤会自由生长而不受压力,但其大小会受到扩散的限制。在这两种情况下,肿瘤往往保持球形。为了说明该方法的稳健性,将肿瘤笼状装置可逆地集成到用于药物测试的微流体芯片中。我们的结果表明,在切向流条件下,考布他汀 A-4 对肿瘤分解有明显的影响。
相反,无法通过不同的用户 PIN 用同一个 PIN 码键盘控制不同的锁定设备,因为信号会同时发送到所有锁定设备。这不能确保与输入的用户 PIN 相匹配的锁定设备被寻址。在这种情况下,尽管输入了正确的用户 PIN,锁定设备也不会运行。
https://doi.org/10.26434/chemrxiv-2025-zx11g ORCID:https://orcid.org/0000-0002-0143-8894 内容未经 ChemRxiv 同行评审。许可:CC BY-NC-ND 4.0
摘要:蛋白质纳米笼因其独特的结构、卓越的生物相容性和高度定制能力而得到了广泛的研究。特别是,铁蛋白纳米笼 (FN) 已被用于运送各种各样的分子,从化疗药物到成像剂等等。FN 的主要优点之一是它们对转铁蛋白受体 1 的内在靶向效率,该受体在许多肿瘤中过度表达。此外,可以通过基因操作引入新的变体,以提高这种多功能药物输送系统的负载能力、靶向能力和生物利用度。在这篇综述中,我们讨论了 FN 的主要特征以及这种有前途的纳米技术在肿瘤学领域的最新应用,特别强调了实体肿瘤的成像和治疗。
arXiv:2206.06557, SG , C.A.Pattison, E. Tang arXiv:2306.12470, SG , E. Tang, L. Caha, S.H.Choe,Z.他,A.库比卡