摘要。基于晶格的密码学是量词后加密的领先建议之一。最短的向量问题(SVP)可以说是基于晶格的密码学的加密分析最重要的问题,许多基于晶格的方案都具有基于其硬度的安全性主张。SVP的最佳量子算法是由于Laarhoven [LAA16]引起的,并且在(启发式)时间2 0中运行。2653 D + O(D)。 在本文中,我们对Laarhoven的结果进行了改进,并提出了一种(启发式)运行时间为2 0的算法。 2570 D + O(d)其中d是晶格尺寸。 我们还提出了时间内存交易,其中我们量化了算法的量子存储器和量子随机访问存储器的量。 核心思想是通过量子随机步行替换[LAA16]中使用的[LAA16]中使用的Grover的算法。2653 D + O(D)。在本文中,我们对Laarhoven的结果进行了改进,并提出了一种(启发式)运行时间为2 0的算法。2570 D + O(d)其中d是晶格尺寸。我们还提出了时间内存交易,其中我们量化了算法的量子存储器和量子随机访问存储器的量。核心思想是通过量子随机步行替换[LAA16]中使用的[LAA16]中使用的Grover的算法。
在Quantum加密后的两个主要领域,基于晶格和代码,最近的邻居技术已用于加快最先进的加密算法,并获得迄今为止最低的渐近成本估计[May-Ozerov [May-Ozerov,Eurocrypt'15; Becker -Ducas – Gama -Laarhoven,Soda'16]。这些上限对于评估密码系统防止已知攻击的安全性很有用,但是为了确保长期的安全性,人们希望具有紧密匹配的下限,这表明算法方面的改进不会大大降低未来的安全性。由于来自最近的邻居文献的现有下限不适用于在这种情况下出现的最近的邻居问题,因此可能只能通过仅通过改善最近的邻居子例程来找到对这些隐性算法的进一步加速。我们在解决这些密码分析设置中出现的最近邻居搜索问题的成本中得出了新的下限。对于欧几里得公制,我们表明,对于在球体上的随机数据集,[Becker-Ducas – Gama – Gama – Laarhoven,Soda 2016]使用球形帽的局部敏感过滤方法是最佳的,因此在几乎涵盖了所有涵盖所有时间的方法中,因此在几乎所有范围内的方法中都在范围内进行了大量的效果。292 D + O(D)是最佳的。类似的条件最优结果适用于晶格筛分变体,例如2 0。265 D + O(D)量子筛分的复杂性[Laarhoven,PhD论文2016]和以前得出的元组筛分的复杂性估计值[Herold – Kirshanova – Laarhoven,PKC 2018]。对于锤子指标,我们为最近的邻居搜索提供了新的下限,该搜索几乎与文献中最佳的上限相匹配[May – ozerov,Eurocrypt,2015年]。因此,我们在解码攻击方面得出了条件下限,这表明这里也应该在其他地方进行改进,以显着破坏文献中的安全性估计。
https://doi.org/10.26434/chemrxiv-2023-3btbw ORCID:https://orcid.org/0000-0002-5906-7205 内容未经ChemRxiv同行评审。许可证:CC BY-NC 4.0
ISO/TC 24 已制定了有关试验筛、试验筛分和工业织物的多项国际标准。由于这些主题相关且标准重叠,因此需要一个词汇来定义在不同语境中使用的术语。然而,词汇量可能会过大,因为工业筛选实践中使用了许多术语,其中许多术语与特定材料、给定的筛选或筛选过程有关。因此,制定本国际标准的目的是将试验筛和试验筛分与工业筛分联系起来,并只包括足以介绍筛分和筛子概念的其他术语。
在 1、4、5 和 6 英尺深处收集了四个样本。其余四个测试坑 - S-1 至 5-4 - 是手工挖掘的,深度为 1 英尺。收集后,对样品进行了筛分和比重计测试。筛分试验是一种通过将土壤样品通过网眼逐渐变小的筛子来分析颗粒分布的方法。然后称重这些分类后的样品,以确定粗粒到细粒沉积物的变化(Hossain 等人2021)。除了筛分试验外,还使用比重计试验来确定筛分试验难以分类的细粒样品的成分。它是通过测量颗粒在液体中从悬浮液中沉降所需的时间来实现的(Hossian 等人2021)。这些方法的组合给出了从粗颗粒到细颗粒的综合粒度分布。Terracon 进行的粒度测试结果显示在表 1 至表 3 中。它们表明康特拉里湖床的土壤主要由淤泥和粘土组成。除了一个位置(样本位置 T-1)之外,深度为
纳米过滤(NF)提供了一种可扩展且节能的方法,用于从盐湖中提取锂。然而,由于其水合离子半径的紧密相似性,锂与镁的选择性分离,尤其是在镁浓度高的盐水中,仍然是一个重大挑战。有限的LI + / mg 2 +当前NF膜的选择性主要归因于对孔径和表面电荷的控制不足。在这项研究中,我们报告了结合功能化的磺化carge胶以调节界面聚合过程的层间薄膜复合材料(ITFC)膜的发展。该集成的层间在控制胺基单体的扩散和空间分布中起着至关重要的作用,从而导致形成致密的纳米条纹聚酰胺网络。与常规的TFC膜相比,这些结构改进,包括精致的孔径和减少负电荷可显着提高LI + /Mg 2 +选择性(133.5)和渗透率增加2.5倍。此外,纳米条纹结构优化了膜过滤区域,同时最大程度地降低了离子传输抗性,从而有效克服了离子选择性和渗透性之间的传统权衡。这项研究强调了ITFC膜在达到高锂纯度和恢复的潜力,为大规模从盐水中提取大规模锂的途径有前途的途径。
几十年来,化肥生产商一直依赖 Derrick 的精细筛分技术。从饱和盐水溶液中的湿筛分到高温干筛分,Derrick 筛分机用于钾肥、磷酸盐和硝酸盐加工厂。应用范围从 4.5 毫米以上到 45 微米,高效尺寸分离有利于湿法分级、再研磨回路、浮选和脱泥回路。有多种坚固的机器设计可供选择,可应对最恶劣的环境,Derrick 的技术使以前认为不可能的实际应用成为可能!
• 适用于直径为 3 英寸 (76.2 毫米)、100 毫米、150 毫米、200 毫米、8 英寸 (203 毫米) 的试验筛 • 自动调整振幅 • 强制调节三维筛分动作 • 所有功能均采用电子控制,数字显示 • 可保存 10 个筛分程序 • 简单的按钮式前面板 • 电磁驱动 • 每分钟 3,000 次脉冲 (50 赫兹) • 间歇或连续运行 • 最大。整个筛塔的重量:8.7 公斤(相当于约3 公斤样品重量)
几十年来,化肥生产商一直依赖 Derrick 的精细筛分技术。从饱和盐水溶液中的湿筛分到高温干筛分,Derrick 筛分机用于钾肥、磷酸盐和硝酸盐加工厂。应用范围从 4.5 毫米以上到 45 微米,高效尺寸分离有利于湿法分级、再研磨回路、浮选和脱泥回路。有多种坚固的机器设计可供选择,可应对最恶劣的环境,Derrick 的技术使以前认为不可能的实际应用成为可能!