我们研究了 Cliffiord+ CS 门集上的两量子比特电路,该门集由 Cliffiord 门和受控相位门 CS = diag(1 , 1 , 1 , i ) 组成。Cliffiord+ CS 门集对于量子计算是通用的,其元素可以通过魔法状态蒸馏在大多数纠错方案中以容错方式实现。由于非 Cliffiord 门通常以容错方式执行的成本更高,因此通常希望构建使用少量 CS 门的电路。在本文中,我们介绍了一种高效且最优的两量子比特 Cliffiord+ CS 算子合成算法。我们的算法输入一个 Cliffiord+ CS 算子 U 并输出一个针对 U 的 Cliffiord+ CS 电路,该电路使用尽可能少的 CS 门。由于该算法是确定性的,因此它与 Cliffiord+ CS 算子相关联的电路可以看作是该算子的标准形式。我们给出了这些范式的明确描述,并利用该描述推导出最坏情况下限为 5 log 2 ( 1
2020年2月15日至16日,在印度奥里萨邦贝尔汉普尔国家科学技术学院(自治)主办的“数学分析与计算全国研讨会暨奥里萨邦数学学会第47届年会”上,发表了题为“关于一类Toeplitz算子和小Hankel算子”的研究论文。
o 获得持续学习和知识更新的基本知识工具 o 学生将培养不断更新物理研究中的数学技术和技能的态度。 教学大纲 内容知识 度量空间。定义。例子。开集、闭集、邻域。拓扑空间。连续映射。稠密集、可分空间。收敛和柯西序列。完备性。例子。度量空间的完备性。巴拿赫空间。向量空间。范数空间。完备性和巴拿赫空间。例子:有限维空间、序列空间、函数空间。有界线性算子。连续性和有界性。BLT 定理。连续线性泛函和对偶空间。有界线性算子的巴拿赫空间。例子。测度论简介。勒贝格积分。Sigma 代数和 Borel 测度。可测函数。支配和单调收敛。富比尼定理。例子:绝对连续测度、狄拉克测度、康托测度。勒贝格分解定理。希尔伯特空间。内积。欧几里得空间和希尔伯特空间。正交性、勾股定理。贝塞尔不等式和柯西-施瓦茨不等式。三角不等式。平行四边形定律和极化恒等式。例子。直和。投影定理。Riesz-Fréchet 引理。正交系统和傅里叶系数。正交基和 Parseval 关系。Gram-Schmidt 正交化程序。与 l^2 同构。张量积和积基。希尔伯特空间上的线性算子。有界算子的 C ∗ -代数。正规、自伴、酉和投影算子。Baire 范畴定理。一致有界性原理。一致、强和弱收敛。一些量子力学。无界算子。伴生。对称和自伴算子。例子:乘法和导数算子。本质自伴算子。自伴性和本质自伴性的基本标准。图、闭包
AKLT 状态是各向同性量子海森堡自旋 1 模型的基态。它表现出激发间隙和指数衰减的关联函数,其边界处具有分数激发。到目前为止,一维 AKLT 模型仅在捕获离子和光子系统中进行了实验。在这项工作中,我们成功地在嘈杂的中尺度量子 (NISQ) 时代量子设备上准备了 AKLT 状态。具体来说,我们在 IBM 量子处理器上开发了一种非确定性算法,其中 AKLT 状态准备所需的非幺正算子嵌入在幺正算子中,每对辅助自旋 1/2 都有一个额外的辅助量子位。这种幺正算子实际上由由单量子位和最近邻 CX 门组成的参数化电路表示。与 Qiskit 的传统算子分解方法相比,我们的方法仅使用最近邻门即可实现更浅的电路深度,同时保持原始算子的 99.99% 以上的保真度。通过同时后选择每个辅助量子比特,使其属于自旋向上 |↑〉 的子空间,可以在量子计算机上通过从单重态加上辅助量子比特的初始平凡乘积状态演化系统地获得 AKLT 状态,然后通过对所有其他物理量子比特进行测量来记录该状态。我们展示了如何通过读出误差缓解在 IBM 量子处理器上进一步提高我们的实现的准确性。
对于直接实现酉门的传统量子计算机来说,模拟描述非酉演化后量子系统真实相互作用的一般量子过程是一项挑战。我们分析了有前途的方法的复杂性,例如 Sz.-Nagy 膨胀和酉函数的线性组合,它们可以通过非酉算子的概率实现来模拟开放系统,这需要多次调用编码和状态准备预言机。我们提出了一种量子二酉分解 (TUD) 算法,使用量子奇异值变换算法将具有非零奇异值的 a 维算子 A 分解为 A = ( U 1 + U 2 ) / 2,避免了经典的昂贵的奇异值分解 (SVD),其时间开销为 O(d3)。这两个酉函数可以确定性地实现,因此每个酉函数只需要调用一次状态准备预言机。对编码预言机的调用也可以显著减少,但测量误差可以接受。由于TUD方法可以将非幺正算子实现为仅两个幺正算子,因此它在线性代数和量子机器学习中也有潜在的应用。
量子计算于大约 30 年前引入并理论化,但目前仍处于起步阶段:当前的技术设备只能处理几个量子比特。然而,这种新的计算范式显示出巨大的前景,潜在的应用范围从高性能计算 [8] 到机器学习和大数据 [9]。量子算法通常通过量子电路来描述,即一系列符合硬件技术特性的基本运算。量子计算的数学形式是 (有限维) 希尔伯特空间理论:量子电路表示为幺正算子 [16],与执行算法的机器支持无关。因此,建立以矩阵描述的幺正算子和以电路描述的幺正算子之间的联系是至关重要的,哪怕只是为了更好地理解如何设计新算法。从电路中获取矩阵可以通过在量子硬件上运行电路(加上一些断层扫描)或通过在经典计算机上进行模拟来完成 [ 2 , 24 ]。从矩阵中获取电路更为复杂,属于更普遍的问题,称为量子编译,即如何将以未知形式描述的量子算子转换为目标
在本文中,我们处理 q 演算的结构,它开发了一种有趣的计算技术并组织了不同类的算子和特定的变换。q 演算的重要性出现在包括物理问题在内的大量应用中。对称 q 激活通常实现 q 微分方程(可能涉及导数)。因此,这些算子和 q 对称算子的对称性之间的密切联系有待估计(参见 [1 – 9])。在最近的研究中,我们提供了一种从对称性质中推导和解释的过程,并与传统案例进行了类比。通过将 q 演算和对称 Salagean 微分算子相结合,我们引入了一种新的修改后的对称 Salagean q 微分算子。通过使用此算子,我们给出了新类的解析函数。
局域性无疑是量子理论和广义相对论不可分割的一部分。另一方面,像 AdS/CFT 这样的全息理论意味着,在边界理论中,体量子引力自由度被编码在空间无穷远处。尽管这种说法是在非微扰层面上的说法,但在量子引力的微扰极限中,这种性质仍然存在。这主要是由于引力高斯定律,它使我们无法定义严格的局部算子。由于在描述中包含引力要求理论在坐标变换下不变,因此物理算子需要是微分同胚不变的。高斯定律实现的这一条件要求算子被修饰到边界,并包含一个延伸到无穷远处的引力版本的威尔逊线,因此要求它们是非局部的。为了解决这一矛盾,我们提出了候选算子,它们可以绕过这一要求,同时在 AdS/CFT 环境中具有局部和微分同胚不变性。这些算子仍然满足引力高斯定律的一个版本,因为它们被解释为相对于状态的特征进行修饰。因此,这些算子所定义的状态是破坏理论对称性并具有“特征”的状态。这些状态通常是具有大方差的高能状态,对应于块体中非平凡的半经典几何。该提议还将有助于解决有关岛屿提议的悖论。此外,这使得人们能够在微扰量子引力中更具体地讨论子区域、其相关子系统和信息局部化。在第二部分中,我们将主要关注称为 AdS-Rindler 楔形的块体子区域。我们将使用从量子信息和量子计算界借用而来的 Petz 映射,从其边界对偶子区域明确地重建该体子区域。这与先前关于体子区域重建的猜想以及由于引力的量子误差校正性质,Petz 映射可用于重建纠缠楔的提议相一致。此外,我们精确研究了 AdS Rindler 楔中的算子代数,包括体和边界对偶。使用交叉积构造和一种新的重正化 Ryu Takayanagi 表面的方法,我们展示了如何通过包括引力校正将代数修改为更易于管理的代数,我们可以在其中定义密度矩阵和冯诺依曼熵。最后,在存在引力相互作用的情况下,我们研究了一般背景下算子代数的一种特殊表示,称为协变表示。这种表示将从物理角度阐明交叉乘积构造的含义。