摘要。本文介绍了使用基于智能手机的计算机视觉技术来诊断手动障碍的经济高效,高效且可访问的解决方案的开发。它突出了使用TOF相机数据与RG数据和机器学习算法相结合的想法,以准确识别四肢和运动,这克服了传统运动识别方法的局限性,改善了康复和降低专业医疗设备的高成本。使用智能手机和先进的计算方法的无处不在,该研究提供了一种新的方法来提高运动障碍诊断的质量和可及性,为未来的研究和在临床实践中的研究和应用提供了有希望的方向。
注意:1. 技术研讨会:CIE 分数将由一个委员会评定,该委员会由担任主席的系主任、指导老师/联合指导老师(如果有)和系的一名高级教员组成。该课程的同一学期和其他学期的所有研究生必须参加研讨会。技术研讨会授予的 CIE 分数将基于对研讨会报告、演讲技巧和问答环节的评估,比例为 50:25:25。2. 实习:所有学生必须在第一和第二学期和/或第二和第三学期的假期期间进行为期 6 周的强制性实习。大学考试将在第三学期进行,规定的学分将在同一学期计算。实习应被视为及格,并应考虑授予学位。那些没有参加/完成实习的人将被宣布为实习课程不及格,并必须在满足实习要求后在随后的大学考试中完成实习。
●发展其计算机科学,数字媒体和信息技术方面的能力,创造力和知识●开发和应用其分析,解决问题,设计和计算思维能力●了解技术的变化如何影响安全,包括保护其在线隐私和身份的新方法,以及如何识别和报告范围的问题。
HCL Technologies KAL-M 机器人和创新 Cybernaut Edu-Tech ST Microelectronics GeeplexTech Solutions Pvt Ltd Soil of Life KH Exports India Pvt Limited Solaiera (Solutions AI Era), 海得拉巴 谅解备忘录 出版物 学者信息 资助项目 应用论文 审阅活动 组织活动 参加活动 其他活动 ME(CSE) 入学指导 - 2024-2026 批次 NBA 认证 课程 R2024 SHAPE 2024 学生暑期实习 (SSI 2024) 学生成就 课外活动 第 60 届全国轮滑锦标赛 实习亮点 - 学年2023-2024 技术文章
b'插入\ xc3 \ xbchrung在软件开发软件中的编程中
在精确的牲畜种植中,牛的个体识别对于为赋予动物福利,健康和生产力做出的决定提供了至关重要的。在文字中,存在可以读取耳罩的模型;但是,它们不容易携带到现实世界中的牛生产环境,并主要在静止图像上做出预测。我们提出了一个基于视频的牛耳牌阅读系统,称为deRmycow,该系统利用视频中的节奏特性来准确检测,跟踪和读取边缘设备上25 fps的牛耳标。对于视频中的每个帧,ReDmycow在两个步骤中发挥作用。1)标签检测:Yolov5s对象检测模型和NVIDIA DEEPSTREAM跟踪层检测并跟踪存在的标签。2)标签读数:小说whentoread mod-ule决定是读取每个标签,使用trba场景文本识别模型或使用从前框架上读取的读数。该系统是在边缘设备上实现的,即NVIDIA JETSON AGX ORIN或XAVIER,使其可移植到没有外部计算资源的牛生产环境中。要达到实时速度,请阅读 - MyCow仅在当前框架中读取检测到的标签,如果它认为在当前框架中明显改善决策时,它将获得更好的读数。理想情况下,这意味着即使标签被遮挡或模糊,也可以在视频中找到标签的最佳读数并存储在视频中。在真正的中西部奶牛场住房测试该系统时,9,000头母牛,雷米科(Demmycow)系统准确地阅读了96.1%的印刷耳廓,并证明了其现实世界中的商业潜力。devmycow为商业牛农场提供了知情的数据驱动决策流程的机会。