将几何模型拟合到离群污染数据上是可证明的难点。许多计算机视觉系统依靠随机抽样启发式方法来解决稳健拟合问题,但这种方法不提供最优性保证和误差界限。因此,开发新方法来弥合成本高昂的精确解决方案与无法提供质量保证的快速启发式方法之间的差距至关重要。在本文中,我们提出了一种用于稳健拟合的混合量子经典算法。我们的核心贡献是一种新颖的稳健拟合公式,它可以解决一系列整数程序并以全局解或误差界限终止。组合子问题适合量子退火器,这有助于有效地收紧界限。虽然我们对量子计算的使用并没有克服稳健拟合的根本难点,但通过提供误差界限,我们的算法是对随机启发式算法的实际改进。此外,我们的工作代表了量子计算在计算机视觉中的具体应用。我们展示了使用实际量子计算机(D-Wave Advantage)和通过模拟 1 获得的结果。
摘要:数字景观中的身份验证是由于不断发展的网络威胁而面临的持续挑战。传统的基于文本的密码,这些密码容易受到各种攻击,因此需要创新解决方案来加强用户系统。本文介绍了Rosecliff算法,该算法是一种双重身份验证机制,旨在提高针对复杂的黑客尝试的弹性并不断发展存储的密码。该研究探讨了加密技术,包括对称,不对称和混合加密,从而解决了量子计算机构成的新兴威胁。Rosecliff算法将动态介绍给密码中,该密码允许在多个平台上进行更安全的通信。评估算法的强大攻击,例如蛮力,字典攻击,中间攻击和基于机器学习的攻击。Rosecliff算法通过其动态密码的一代和加密方法,证明了针对这些威胁有效的。可用性评估包括实施和管理阶段,专注于无缝集成以及用户体验,强调清晰度和满意度。限制被承认,从而敦促对加密技术的弹性,鲁棒性的鲁棒性以及对新兴技术的整合的进一步研究。总而言之,Rosecliff算法是一种有希望的解决方案,从而有效地应对现代身份验证挑战的复杂性,并为未来的数字安全研究和增强功能奠定了基础。
将可再生能源集成到现代智能电网中,由于能源产生的可变性和不可预测性,提出了重大挑战。对可再生能源输出的准确实时预测对于确保网格稳定性,优化能量分布并最大程度地减少了能量浪费至关重要。本研究探讨了针对智能电网中实时可再生能源预测的可扩展监督学习算法的开发和应用。
在世界范围内,警察部门使用犯罪预测软件来预先预测并防止未来的罪行。预测性警务只是安全当局以及特殊的执法机构努力通过通过社会技术手段产生与未来相关的知识来使未来易于管理的众多方式之一。在进行预测性警务时,警察部门不仅会产生对未来的预期见解,而且会积极地塑造目前的介入。在本章中,我们将预测性警务分析为生产和塑造与犯罪相关的未来的社会技术过程。更确切地说,我们将预分法的警务分析为“翻译链”(Latour,1999:70)。这样做,我们追踪了犯罪预测的产生,从算法编程和数据输入到警察执行的数据:涉及许多认知翻译的过程 - 在不同的位置,但通常会及时接近。我们将预测性警务描述为一个由不同阶段组成的增量过程,专门针对基于德国的基于地方的犯罪预测软件。将这一过程作为“翻译链”,我们显示了一个较大的(认知)差距,该差距在预测过程的开始及其结束之间出现。在一个或多或少的无缝过程中,这一差距是由人类和非人类填补的,从相应警察总部的犯罪分析部门开始,并在预测的风险区域的街道上结束。我们收集了从11个警察部门,其中4个位于瑞士和7个在德国的定性数据。将预测性警务视为一系列翻译,使我们能够将其分析为一种富有成效的社会技术过程,该过程有时会以非线性方式进行。本章借鉴了一个有关我们在2017年至2018年间在德国和瑞士进行的犯罪预测软件实施和使用的研究项目。在数据收集时,所有部门都已经定期使用预测性警务工具,运行现场实验以确定是否使用和/或如何最好地实施此类工具,或者开发自己的工具。总共对警察主持人进行了62次半结构化访谈。这些官员从事各种角色,包括后台工作,
摘要 - 本文提出了一种旨在检测套利机会的模型,重点是三角形和跨市场套利。利用Bellman-Ford算法和图形理论,该模型有效地确定了负循环,指示了高流动性环境中潜在套利的负循环,并结合了虚拟和实时数据。虽然证明它对于三角套利特别有效,但该模型需要进一步的完善才能提高其在跨市场场景中的有效性。在实际交易方案中,该模型面临着重大挑战,例如需要快速执行,交易费用的影响以及波动金融市场的需求。该研究讨论了必要的模型增强功能,以提高现实世界的适用性和执行效率。
在科幻电视剧《星际迷航:原初系列》的“末日决战”一集中,企业号的船员们访问了一对行星,这两颗行星已经进行了 500 多年的计算机模拟战争。为了防止他们的社会被毁灭,这两个星球签署了一项条约,战争将以计算机生成的虚拟结果进行,但伤亡人数将是真实的,名单上的受害者自愿报告被杀。柯克船长摧毁了战争模拟计算机,并受到谴责,因为如果没有计算机来打仗,真正的战争将不可避免。然而,战争持续这么久的原因正是因为模拟使两个社会免受战争的恐怖,因此,他们几乎没有理由结束战争。虽然基于科幻小说,但未来人工智能战场的威胁引发了人们对战争恐怖的道德和实际担忧。驱使各国采用致命自主武器系统 (LAWS) 的逻辑确实很诱人。人类是会犯错的、情绪化的、非理性的;我们可以通过 LAWS 保护我们的士兵和平民。因此,这种推理将 LAWS 构建为本质上理性的、可预测的,甚至是合乎道德的。杀手机器人,尽管名为杀手机器人,实际上会拯救生命。然而,这种逻辑是愚蠢的。如果人工智能战争专注于完善战争手段,而忽视战争的目的,那么它就会存在许多潜在的陷阱。就像在《星际迷航》中一样,无风险战争的诱惑力很强,但它会给那些最终不可避免地被杀死、致残和流离失所的人带来真正的后果。接下来,我认为 LAWS 的前景存在严重的道德问题,而这些问题是先进技术无法解决的。道德不能预先编程以适用于各种情况或冲突,而有意义的人为控制忽视了自动化偏见如何影响决策中的人机交互。军事实体和非政府组织都提出了有意义的人类控制的概念,特别是在致命决策中
抽象教育是改变知识的一种方式,以便人类能够发展潜力。教育鼓励每个人发展并适应不断变化的时代,例如技术领域的进步。学生的学习成绩是成功管理学习计划的关键指标。学术绩效检测可以帮助研究计划经理监视并对有可能遇到困难的学生采取积极行动。机器学习可以是通过帮助分类和检测学生学术能力来克服这一挑战的解决方案。机器学习技术已被证明非常有效地分析复杂的数据并揭示了人们难以检测的隐藏模式。本研究旨在探索在检测学生学业表现的机器学习算法的实施,尤其是在NIAS大学数学教育研究计划中。随着技术进步,机器学习已被证明在分类数据和检测传统方法无法识别的隐藏模式方面有效。本研究使用支持向量机(SVM)算法根据从学生主要数据中收集的数据集来预测学生的学习成绩。数据集包括各种因素,例如GPA值,出勤,参与和学习资源的使用。在要使用的方法中,将使用调查表收集数据,其中有许多受访者多达193人。已收集的数据将使用SVM处理,以在预测学生的学习成绩中获得结果。分析结果表明,使用的SVM模型的精度为77.59%,在学业表现良好的学生班级中的偏见更加倾向。这项研究的结果有望在开发更有效的学习方法和对三级机构的学术干预的个性化方面做出实际贡献。关键字:机器学习,学业表现和支持向量机
January 27, 2025 The Honorable Delegate Cliff Hayes, Chair House Communications, Technology and Innovation Committee House Committee Room C - 206 Dear Chair Hayes and members of the Committee: On behalf of Chamber of Progress, a tech industry association supporting public policies to build a more inclusive country in which all people benefit from technological leaps, I write to respectfully urge you to oppose HB 2094, which would hinder the adoption of innovative AI技术没有有意义地推进公民权利。进步会议厅旨在确保所有美国人都从技术飞跃中受益。我们的公司合作伙伴包括Google,Apple和Amazon等AI创新者,但我们的合作伙伴对我们的职位没有投票或否决。AI具有改善教育,实现创造性表达和创造新的商机的巨大潜力。因此,公共政策促进这些创新的广泛和公平分配至关重要。因此,政策制定者应避免政策适得其反,以适得其反地采用AI技术。HB 2049将人工智能系统定义为“基于机器学习的系统,对于任何明确或隐式的目标,从该系统的输入中注射,将收到如何产生输出,包括内容,决策,预测和可能影响物理或虚拟环境的建议”,这将涵盖大多数软件,而这些软件将涉及大多数软件,同时忽略了离线,实际上,实际上是歧视性的,潜在地构成了潜在的,这将涉及。HB 2049的赞助商正当关注侵犯民权,尤其是住房,就业或贷款方面的歧视。历史上边缘化的社区在这些地区又反复歧视,
开始分析来自加拿大家庭的数千种母乳样本。在这种情况下,我们对加拿大这里更普遍的食物过敏,肥胖和问题等事物更感兴趣。但是,当然,母乳也与世界其他地方普遍存在的其他疾病有关。因此,盖茨基金会资助的研究是在他们正在进行的其他一些研究上都可以背负。所以一个在坦桑尼亚,一个在布基纳法索,另一个在巴基斯坦。因此,我们能够与这些研究联系,让它们收集母乳样本,然后将其送到曼尼托巴省。,然后我的团队与世界各地的专家建立了联系。,因此我们将这支大型团队聚集在一起,然后将所有这些数据放在一起,并尝试了解它如何合作?它如何支持婴儿健康?
