在经典计算机上精确模拟量子系统(包括量子化学中的量子系统)在计算上非常困难。问题在于描述所研究系统所需的希尔伯特空间的维数实际上会随着系统的大小而呈指数增长,如图 1 所示。无论我们模拟动态还是计算某些静态属性(例如能量),这个限制始终存在。理查德·费曼提出了一种替代经典模拟的方法 [1]。他的想法是将上述量子系统的缺点转化为其优点。他建议将所研究量子系统的希尔伯特空间映射到另一个量子系统上(它们都呈指数级大),从而有效地在一个量子系统上模拟另一个量子系统(即在量子计算机上)。虽然开发小型量子计算机已经花了 30 多年的时间,但我们可能很快就会从费曼的建议中受益。 1 事实上,量子化学被认为是小型噪声量子计算机(称为噪声中型量子 (NISQ) 设备)的首批实际应用之一 [4]。此外,人们相信量子计算机最终将使我们能够解决化学、物理学和材料科学中的经典难题 [5–7]。特别是,强关联系统,如催化剂或高温超导体,属于具有高度社会经济重要性的问题,这些问题可以借助量子硬件得到解决。到目前为止,已经提出了几种量子算法来有效地解决化学中的计算难题(即在多项式时间内使用多项式资源,相对于所研究系统的规模和精度)。其中一些也已通过实验得到证实 [6]。然而,由于量子硬件能力有限,这些实验“仅仅”代表了小型化学系统的原理验证模拟,我们可以轻松地用经典方式模拟这些系统。为了使它们具有可扩展性,需要进行量子误差校正,这需要比目前更低的误差率,而且还需要数量级更多的(物理)量子比特。另一方面,这个领域发展非常迅速,我们可能在不久的将来看到分子的误差校正数字量子模拟。如上所述,已经提出了几种可以解决化学中不同类型问题的量子算法[6]。事实上,量子计算化学[5]在过去的15年里取得了巨大的进步。2 在本章中,我们提到了一些算法,但大多数时候都局限于分子汉密尔顿量的电子结构问题,即寻找分子低能谱的问题。这些算法可以作为几何优化、光学特性计算或反应速率测定的子程序[5]。此外,这里阐述的方法可以很容易地应用于其他问题(例如振动分析)。我们专注于数字量子模拟(模拟量子模拟是另一章的主题),这意味着
流动资产 161,064 157,621 171,960 10,895 6.8 14,338 9.1 13,132 1,205 票据、应收账款及合同资产 64,677 60,432 62,298 (2,379) (3.7) 1,865 3.1 4,293 (2,428) 存货 75,341 71,909 74,729 (611) (0.8) 2,820 3.9 6,263 (3,444) 非流动资产 59,255 59,216 64,752 5,496 9.3 5,536 9.3 5,416 119
(注意)相关属性分类以阴影形式显示。 ◇资产合并资产分配固定类型(其他资产(股票,房地产投资信托,其他资产,其他资产,股票价格指数指数期货交易,政府债券期货交易)))))该基金通过股票投资贸易股票或投资信托提供了固定的股票股票信托,对股票投资贸易库或固定股票的投资信托公司“固定股票交易”。投资并固定了固定的比率。 ETC。”。 ◇没有外汇套期保值是指招股说明书或投资信托协议,该协议指出外汇将不会受到套期保值,否则将对外汇进行对冲。 *属性类别中列出的“交换对冲”表明是否有对日元交换风险的风险。
在本文中,作者扩展了 [1],并提供了更多关于大脑如何像量子计算机一样运作的细节。具体而言,我们将两个轴突上的电压差假设为离子在空间叠加时的环境,认为在存在度量扰动的情况下的演化将不同于不存在这些波的情况下的演化。由于节点处离子的量子态与“控制”电位的相互作用,这种差异状态演化将对束正在处理的信息进行编码。在退相干(相当于测量)后,离子的最终空间状态被决定,并且它也会在下一个脉冲起始时间重置。在同步下,几个束同步经历这样的过程,因此量子计算电路的图像是完整的。在这个模型下,仅根据胼胝体轴突的数量,我们估计每秒在这个白质束中可能准备和演化出多达 5000 万个量子态,远远超过任何现有量子计算机所能完成的处理能力。关键词
微扰理论广泛应用于各个领域,是一种从相关简单问题的精确解开始,获得复杂问题近似解的强大工具。量子计算的进步,尤其是过去几年的进步,为传统方法的替代提供了机会。在这里,我们提出了一个通用量子电路,用于估计能量和本征态校正,在估计二阶能量校正时,它远远优于经典版本。我们展示了我们的方法应用于双站点扩展 Hubbard 模型。除了基于 qiskit 的数值模拟之外,还介绍了 IBM 量子硬件上的结果。我们的工作提供了一种使用量子设备研究复杂系统的通用方法,无需训练或优化过程即可获得微扰项,可以推广到化学和物理学中的其他汉密尔顿系统。
在本文中,作者扩展了 [1],并提供了更多关于大脑如何像量子计算机一样运作的细节。具体来说,假设两个轴突上的电压差是离子在空间叠加时的环境,我们认为在存在度量扰动的情况下的演化将不同于不存在这些波的情况下的演化。由于节点处离子的量子态与“控制”电位的相互作用,这种差异状态演化将对束正在处理的信息进行编码。在退相干(相当于测量)后,离子的最终空间状态被决定,并且它也会在下一个脉冲启动时间重置。在同步下,几个束会同步经历这样的过程,因此量子计算电路的图像是完整的。在这一模型下,仅根据胼胝体轴突的数量[2],我们估计每毫秒内,这一白质束中可能准备和演化出 1500 万个量子态,这一处理能力远远超过任何现有量子计算机所能完成的处理能力。
摘要 — 由于量子电路上的旋转分量,一些基于变分电路的量子神经网络可以被认为等同于经典的傅里叶网络。此外,它们还可用于预测连续函数的傅里叶系数。时间序列数据表示变量随时间的状态。由于一些时间序列数据也可以被视为连续函数,我们可以预期量子机器学习模型能够成功地对时间序列数据执行许多数据分析任务。因此,研究用于时间数据处理的新量子逻辑并分析量子计算机上数据的内在关系非常重要。在本文中,我们使用需要少量量子门的简单量子算子,通过 ARIMA 模型对经典数据预处理和预测进行量子模拟。然后,我们讨论了未来的方向以及可用于量子计算机上时间数据分析的一些工具/算法。
量子计算一直是量子物理学中一个令人着迷的研究领域。最近的进展促使我们深入研究通用量子计算模型 (UQCM),该模型是量子计算的基础,与基础物理学有着紧密的联系。尽管几十年前就已开发,但仍然缺乏一个物理上简洁的原理或图像来形式化和理解 UQCM。鉴于仍在出现的模型的多样性,这具有挑战性,但对于理解经典计算和量子计算之间的差异很重要。在这项工作中,我们进行了一次初步尝试,通过将其中一些分为两类来统一 UQCM,从而制作了一个模型表。有了这样的表格,一些已知的模型或方案就会以模型的混合或组合的形式出现,更重要的是,它导致了尚未探索的新方案。我们对 UQCM 的研究也为量子算法带来了一些见解。这项工作揭示了系统研究计算模型的重要性和可行性。