摘要:单壁碳纳米管(SWCNT)和底物之间的界面热电导很少被表征和理解,这是由于在探测跨这样的NM范围接触的能量传输方面的重大挑战。在这里,我们报告了<6 nm厚的SWCNT束和Si底物之间的界面热电导。用于测量能量传输状态分辨的拉曼,其中拉曼频谱在连续波(CW)下变化,并测量20 ns脉冲激光加热,用于在稳定和短暂的热传导下通过界面热导电持续的稳定和短暂热传导的热响应。由于样品的激光吸收和温度升高不需要知识,因此测量可以实现极端的能力和置信度。在SWCNT束的三个位置中,测量界面热电阻为(2.98±0.22)×10 3,(3.01±0.23)×10 3,以及(1.67±0.27)×10 3 K M W - 1,对应于范围内的热电导率(3.3-3-6.0-×10)。我们的分析表明,SWCNT束和SI基板之间的接触松散,这主要归因于样品的明显不均匀性,这是通过原子力显微镜和拉曼光谱法解决的。对于假定的接触宽度约为1 nm,界面热电阻的阶将为10-6 W m-2 k-1,与报告的机械去角质石墨烯和二维(2D)材料一致。
本研究尝试设计全加器中的高性能单壁碳纳米管 (SWCNT) 束互连。为此,使用 HSPICE 软件中的仿真研究了电路性能,并考虑了 32 纳米技术。接下来,使用田口方法 (TA) 分析了几何参数(包括纳米管直径、束中纳米管之间的距离以及束的宽度和长度)对全加器中 SWCNT 束互连性能的影响。田口灵敏度分析 (TSA) 的结果表明,束长度是影响电路性能的最有效参数(约占功率耗散的 51% 和传播延迟的 47%)。此外,与其他参数相比,纳米管之间的距离对响应的影响很大。此外,响应面法 (RSM) 表明,增加互连长度 (L) 会提高功率耗散的输出。随着互连线宽度 (W) 和碳纳米管直径 (D) 的增加,功耗也增加。减小束中碳纳米管之间的距离 (d) 会导致功耗增加。如果考虑互连线长度和宽度 (L、W) 以及碳纳米管直径 (D) 的参数的最大值以及束中碳纳米管之间距离 (d) 的最小值,则功耗最高。结果还表明,互连线长度 (L) 的增加会增加传播延迟。最后,报告了最佳参数,并使用不同方法 (TA 和 RSM) 比较了优化系统的性能。结果表明,用不同方法预测的全加器中 SWCNT 束互连线最优设计的性能差异小于 6%,根据工程标准是可以接受的。