图3血管化策略。(a)可以通过将水凝胶放置在牺牲导管周围(例如针蚀刻),然后将微孔涂在微孔细胞(ECS)上来产生模仿容器的单个通道。在面板A的最右边显示了容器的横截面。(b)也可以使用微孔膜制成空心的镀膜导管,以单层设计中的(i)矩阵填充的腔室,或(ii)在双层设备中的两个相邻的液体填充室。(c)或者,可以将ECS(红色)和基质细胞(蓝色)与水凝胶混合,并在使用的软性光刻的间隙流(黑色箭头)和生长条件下制成的设备中播种,以使血管网络使血管网络自我组成。血管结构出现在2 - 3天内,然后连接形成相互联系,分支和灌注的微脉管系统。船舶的横截面显示在面板C的最右边。
激光剥离 (LLO) 通常用于将功能薄膜与下面的基板分离,特别是将基于氮化镓 (GaN) 的发光二极管 (LED) 从蓝宝石中分离出来。通过将 LED 层堆栈转移到具有定制特性的外来载体(例如高反射表面),可以显著提高光电器件的性能。传统上,LLO 是使用纳秒级的紫外激光脉冲进行的。当指向晶圆的蓝宝石侧时,蓝宝石/GaN 界面处的第一层 GaN 层吸收脉冲会导致分离。在这项工作中,首次展示了一种基于 520 nm 波长的飞秒脉冲的 LLO 新方法。尽管依赖于亚带隙激发的双光子吸收,但与传统的 LLO 相比,超短脉冲宽度可以减少结构损伤。在详细研究激光影响与工艺参数的关系后,我们开发了两步工艺方案,以制造边长可达 1.2 毫米、厚度可达 5 微米的独立 InGaN/GaN LED 芯片。通过扫描电子显微镜和阴极发光对分离的芯片进行评估,结果显示 LLO 前后的发射特性相似。