SARS-CoV-2 病毒已成为 21 世纪最大的流行病,感染人数达数亿,死亡人数达数千万人。世界各地的科学家都在竞相开发疫苗和新药,以战胜这场流行病并为 COVID-19 疾病提供有效的治疗方法。因此,迫切需要更好地了解 SARS-CoV-2 的发病机制如何受到病毒突变的影响,并确定病毒基因组中可作为新疗法稳定靶点的保守片段。在这里,我们介绍了一种文本挖掘方法,可直接从参考(祖先)全基因组序列估计基因组片段的可变性。该方法依赖于根据基因组片段在整个基因组中的空间分布和频率来计算其重要性。为了验证我们的方法,我们对近 80,000 个公开可用的 SARS-CoV-2 前身全基因组序列中的病毒突变进行了大规模分析,并表明这些结果与用于关键字检测的统计方法预测的片段高度相关。重要的是,这些相关性在密码子和基因水平以及基因编码区都成立。使用文本挖掘方法,我们进一步确定了可能成为基于 siRNA 的抗病毒药物候选者的密码子序列。值得注意的是,这项研究中确定的候选者之一对应于刺突糖蛋白表位的前七个密码子,这是唯一一种与人类蛋白质不匹配的 SARS-CoV-2 免疫原性肽。
工程化 T 细胞疗法构成了一个快速发展的前沿领域,通常被称为继手术、化疗和放疗之后的癌症治疗的第四大支柱 22 。在 T 细胞疗法中,CAR-T 细胞疗法获得了最高的关注度,因为它们仅获得了监管部门的批准(表 2)。然而,CAR 的使用已显示出某些局限性,其中两个尤为突出。首先,CAR 分子只能识别表面膜蛋白,这限制了靶标选择。只有 20-30% 的人类蛋白质组是膜结合蛋白 23,其中只有一小部分在目标细胞中表达并具有足够的组织特异性以作为治疗靶标。其次,CAR 的表面靶标分布不仅限于组织中的癌细胞。靶向、非肿瘤活性是一个真正的挑战。目前的 CAR-T 细胞疗法会同时消除靶组织中的癌细胞和健康细胞。虽然在某些情况下健康细胞的消耗可以通过临床控制,就像艾米丽·怀特黑德 (Emily Whitehead) 24 岁的情况一样,她在接受 CAR-T 疗法治疗 B 细胞淋巴瘤后没有检测到 B 细胞,但这种肿瘤外活性使得 CAR-T 细胞疗法不适合治疗生存关键组织中的癌症。
microRNA是翻译后生物分子的小型非编码,当表达时,会改变其靶基因。据估计,microRNA调节了负责主要生理过程的所有人类蛋白质和所有蛋白质的60%的产生。在心脏腔内疾病的病理生理学中,有几个细胞产生microRNA,包括内皮细胞,血管平滑肌细胞,巨噬细胞,巨噬细胞,板块和心肌细胞。从各种细胞来源得出的microRNA之间存在一个恒定的串扰。动脉粥样硬化的启动和进展是由许多促炎和促性的microRNA驱动的。刺激性斑块破裂是急性冠状动脉综合征(ACS)造成心血管死亡的主要原因,并导致ACS后心脏重塑和纤维化。microRNA是斑块发展和转化为脆弱状态的强大调节剂,最终可能导致斑块破裂。越来越多的证据表明,在ACS之后,microRNA可能会抑制成纤维细胞增殖和疤痕,以及心肌细胞的有害凋亡,并刺激成纤维细胞重编程为诱导的心脏祖细胞。在这篇综述中,我们着重于心肌细胞衍生和心脏成纤维细胞衍生的microRNA的作用,这些microRNA参与了调节与car肌细胞和成纤维细胞功能以及动脉粥样硬化相关性心脏缺血相关的基因的作用。了解它们的机制可能会导致MicroRNA鸡尾酒的发展,这些鸡尾酒可能可能用于再生心脏病学。
抗体工程的矮个教授和瑞典皇家理工学院的指导进化。他的研究和教育都集中在新型生物制剂作为疗法的发展以及新颖的生产方法上。特别是重点是用于新型治愈基因疗法及其可扩展生物生产的蛋白质和细胞系工程方法。他的本科培训是在KTH和悉尼大学(澳大利亚)的化学工程学(民用琼尔),生物技术和计算机科学。他回到瑞典获得了博士学位论文,该论文详细介绍了抗体生成和表征的生物信息和组合实验方法,该方法在Wallenberg资助的人类蛋白质图集(HPA)中实施。他目前是Genenova的总监,Genenova是Precision Health的创新环境,重点是创新平台,旨在降低基因治疗的制造成本100倍。在这个计划中,约翰(Johan)收集了9个跨学科组织,这些组织从传统的重工业阿尔法·拉瓦尔(Alfa Laval),自动化公司生物植物,神经科学家和数学家到阿斯利康(Astrazeneca)和药物开发专家。Johan一直是HPA的成员和Co-PI,旨在在不同的器官和疾病状况中分类所有人类蛋白,自2003年开始。他有超过19000种引用,并在高质量期刊(包括自然方法,核酸研究,细胞报告和科学)中发表了50多篇经过同行评审的论文。
通用应激蛋白(USP)主要参与细胞对生物和非生物胁迫的应答,在植物的生长发育以及对逆境的应激反应中起着重要作用。在拟南芥、玉米和水稻中分别鉴定出23、26和26个USP基因。根据USP基因的理化性质,USP Ⅰ类蛋白质被鉴定为具有高稳定性的亲水性蛋白质。基于系统发育分析,USP基因家族分为6组,USP Ⅲ和USP Ⅴ表现出更多的多样性。此外,同一亚组的成员具有相近的内含子/外显子数量和共同的保守结构域,表明进化关系较近。基序分析结果显示USP基因间具有较高的保守性。染色体分布表明USP基因可能通过片段重复在拟南芥、玉米和水稻中发生了基因扩增。大部分的Ka/Ks值小于1,说明USP基因在拟南芥、玉米和水稻中经历了纯化选择。表达谱分析表明USP基因在水稻中主要响应干旱胁迫,在玉米中主要响应温度和干旱胁迫,在拟南芥中主要响应低温胁迫。基因共线性分析可以揭示基因间的相关性,有助于后续的深入研究。本研究为理解USP基因在单子叶植物和双子叶植物中的进化提供了新的思路,为更好地理解USP基因家族的生物学功能奠定了基础,可用于葫芦科育种相关项目。
Thanh Do,分析化学 驯服离子赛道上的构象异质性 大约 85% 的人类蛋白质组无法通过传统的小分子进行治疗。潜在的药物必须足够大且足够灵活,才能与大的凹槽状结合位点结合,或结合在两种蛋白质的界面上。环孢菌素是一类 N-甲基化的大环肽,它挑战了基于结构药物设计的传统观点。尽管环孢菌素 A (CycA) 自 1983 年以来彻底改变了器官移植领域,但针对不同靶点设计类似药物的尝试均未成功,这表明在 N-甲基化的作用和构象异质性在环孢菌素化学中的功能方面存在知识差距。环孢菌素由于 N-甲基化而具有灵活性,每次顺式/反式酰胺异构化都会改变分子的构象和物理化学性质。 CycA 可以与多个靶标(目前已知两个)结合,结合状态不同,这表明结合状态取决于靶标。先前的研究表明,结合状态(与已知靶标)在溶液中以次要构象异构体的形式存在。这表明环孢菌素可能通过反向诱导契合模型与其靶标结合,其中配体改变其构象以适应结合位点。因此,环孢菌素可以结合的靶标数量可能与其可以采用的可能构象异构体数量成正比。因此,为了充分了解环孢菌素的生化特性,我的实验室致力于准确探测 CycA 和 CycA 类似物的主要和次要构象异构体,使用多种技术,包括实验(X 射线/中子晶体学、离子迁移质谱、2D-NMR、离子光谱)和计算方法。我们发现了一个由二价离子调节的复杂构象网络和动力学。
亲爱的编辑,当在意外的医疗情况下需要新药的需求和新兴病原体的情况一样,药物重新利用是一种方便的选择。近年来,基于网络生物学的方法已证明优于基因。1 Here, we use an innovative methodology that combines mechanistic modeling of the signal transduction circuits related to SARS-CoV-2 infection (the COVID-19 disease map) with a machine-learning algorithm that learns potential causal interac- tions between proteins, already targets of drugs, and speci fi c signaling circuits in the COVID-19 disease map, to suggest potentially repurposable drugs.途径的机理模型提供了自然桥,从基因活性(转录)的变化到表型的变化(在细胞,组织或生物体的水平上)。实际上,人类信号通路的机理模型已成功地用于发现不同疾病背后的特定分子机制,以揭示药物的作用模式,并建议个性化治疗方法。然而,机械模型的最有趣的特性是它们可用于预测干预措施的后果,例如靶向药物的影响。2可用性19疾病图3可用于构建SARS-COV-2感染的现实机理模型以及宿主细胞中发生的所有下游功能后果。这些受影响的电路最终会触发细胞功能,其病毒的扰动会导致199症状或疾病标志。3此疾病图是一组信号转导电路,其中包含与病毒蛋白及其上游和下游连接相互作用的人类蛋白质(请参阅补充结果和补充表S1,共有277个来自49个KEGG途径的电路)。此处用于正确拟合定义电路功能的UNIPROT注释中的主要标志是:(1)宿主 - 病毒相互作用,(2)(2)炎症反应,(3)免疫活性,(4)抗病毒防御,(4)抗病毒防御,(5)内部局部症状,(5)内部局部情况,((6)复制,(6)复制和(7)ELOLTICES和(7)ELOTICS。由于疾病地图社区产生了新的生物学知识,该疾病图将动态更新。
自2010年以来,人类蛋白质组计划(HPP)的人类蛋白质组计划(HPP)是人类蛋白质组组织(HUPO)的旗舰计划,一直追求两个目标:(1)可靠地识别蛋白质零件清单和(2)使蛋白质组学成为人类健康和疾病多组学研究的组成部分。HPP依赖于peptideatlas和Massive-kb对国际合作,数据共享,标准化重新分析,并使用HPP指南使用HPP指南,用于质量保证,NextProt的MS和非MS蛋白质数据的整合和策划,以及人类蛋白质蛋白质的广泛使用抗体,以及大量使用抗体。根据Next Prot版本2023-04-18,现在已经可靠地检测到蛋白质表达(PE1)(PE1),在19,778的19,778 Next Prot预测人类基因组中编码的蛋白质(93%)。通过质谱(MS)检测到17,453,并通过多种非MS方法检测到944。Next Prot PE2,PE3和PE4缺少蛋白的数量现在为1381。实现对从所有染色体中编码的93%的预测蛋白的明确鉴定代表了人类蛋白质组零件清单上的显着实验进度。同时,无论使用哪种基于蛋白质的方法,都有几类预测的蛋白质可抵抗检测。此外,还有一些PE1-4蛋白可能应重新分类为PE5,尤其是21个linc条目和〜30 HERV条目;这些正在今年解决。在广泛的生物学和临床研究中应用蛋白质组学可确保与生物学和疾病驱动的HPP团队以及抗体和病理资源支柱的报道,可确保与其他OMICS平台集成。当前的进步已将HPP定位为过渡到其大挑战项目,重点是确定每个蛋白质本身的主要功能以及在人类健康和疾病背景下的网络和途径中的主要功能。
如该拟议法律所附的解释性报告所述,该法案旨在更新分别自 2001 年(2001 年 3 月 12 日欧洲议会和理事会第 2001/18/EC 号指令)和 2003 年(2003 年 7 月 8 日第 224 号立法法令)起实施的有关转基因生物 (GMO) 的现行立法。事实上,科学已经开发出克服转基因机制的技术,转基因是通过在生物体的 DNA 中引入不同于生物体本身的 DNA 序列来创造生物体。本提案法所指的新基因组技术(NGT)是通过定点诱变进行的基因组编辑技术,也称为定点或靶向诱变(以下称为基因组编辑)和顺式基因编辑。第一种可以在不引入新遗传物质的情况下精确修改 DNA,欧洲食品安全局 (EFSA) 将其定义为位点特异性核酸酶 1 型 (SDN-1) 和位点特异性核酸酶 2 型 (SDN-2)。基因组编辑使用核酸酶类蛋白质(可切割 DNA 的酶)和短 RNA 序列,可引导核酸酶到达基因组中的特定目标点,可能导致基因失活或将自然界中已经存在的修饰引入其序列中。在这两种情况下,获得的突变相当于可以自发发生的突变。农作物物种内的正常生物多样性就是由于这种突变而产生的。最著名的基因组编辑技术被称为“CRISPR/Cas9”,因为它使用了 Cas9 蛋白,由两位研究人员——法国女性 Emmanuelle Charpentier 和美国人 Jennifer Doudna 于 2012 年开发,这一发现为她们赢得了 2020 年诺贝尔化学奖。CRISPR/Cas9 基因组编辑技术被称为“开启生命科学新时代的基因剪刀”。事实上,通过基因组编辑,可以将在其他品种、野生个体或相关物种中发现的任何有利突变引入栽培品种中,而无需引入新基因,最重要的是避免“传统”的漫长的杂交和回交实践:引入的唯一突变就是期望获得的突变。同源性是指从同一物种或者性相容的相关物种的供体生物中插入遗传物质,例如基因。遗传物质未经修改就被插入。即使同一基因拷贝数的变化,经过轻微的修改,也是每个物种中存在的正常生物多样性的一部分。通过杂交和选择可以实现相同的过程,但时间更长且精度更低。
小鼠胚胎干细胞或受精卵中的基因破坏是鉴定体内基因功能的传统遗传学方法。然而,由于不同的基因破坏策略使用不同的机制来破坏基因,这些策略可能导致所得小鼠模型出现不同的表型。为了确定不同的基因破坏策略是否会影响所得突变小鼠的表型,我们对通过三种常用策略(确定性敲除 (KO) 优先和 CRISPR/Cas9)产生的 Rhbdf1 小鼠突变株进行了表征。我们发现 Rhbdf1 对不同的 KO 策略的反应不同,例如,通过跳过外显子并重新启动翻译来潜在地产生获得功能的等位基因,而不是预期的无效或严重的次等位基因。我们的分析还显示,使用 KO 优先策略产生的小鼠中至少有 4% 表现出相互冲突的表型,这表明外显子跳过是整个基因组中普遍存在的现象。此外,我们的研究强调,至少 35% 的小鼠和 45% 的人类蛋白质编码基因可能易于发生靶向 KO 优先和 CRISPR/Cas9 介导的意外翻译。我们的研究结果对基因组编辑在基础研究和临床实践中的应用具有重要意义。简介小鼠在基因上与人类密切相关,因此选择小鼠作为模型系统来破译约 20,000 个蛋白质编码基因的功能,以深入了解人类生物学和疾病。对于大规模小鼠诱变工作,通过小鼠胚胎干 (ES) 细胞中的同源重组进行基因靶向是一种有效且通用的技术。基因靶向涉及确定性无效设计(删除目标基因的整个基因组序列)或靶向敲除 (KO) 优先设计,这提供了多种优势,包括基因破坏和报告标记突变,此外,还允许以组织特异性或时间方式分析基因功能。最近,使用 CRISPR/Cas9 直接破坏受精卵中的基因已经取代了确定性无效和 KO-first 策略。为了确定不同的基因靶向策略是否会影响纯合突变小鼠的表型,我们系统地表征了由这三种 KO 策略(确定性无效、靶向 KO-first 和 CRISPR/Cas9)产生的 Rhbdf1 突变小鼠。Rhbdf1 基因编码 RHBDF1,并被认为在生长发育 [1]、炎症 [2] 和癌症 [3-5] 中起关键作用。确定性无效和靶向 KO-first 策略是强大的高通量方法,可用于 ES 细胞中的大规模基因靶向,以研究数千种哺乳动物蛋白质编码基因,从而更好地了解人类生物学和疾病 [6-8]。在使用确定性无效策略时,基于细菌人工染色体 (BAC) 的打靶载体替换靶基因的整个基因组序列 (补充图 1a),从而产生无效等位基因。相比之下,靶向 KO-first 方法 [9, 10] 是一种包括可根据所需结果选择的替代步骤的策略,具有高度的通用性,