在过去十年中,基于镁(MG)的句法泡沫(SFS)引起了极大的关注,其受欢迎程度不断增长。这是因为它们具有独特的特性,例如高机械强度和轻巧,使它们成为各种行业中应用的潜在候选者,包括航空空间,汽车和生物医学(尤其是在骨科医师中)。本文回顾并讨论了用于生产镁矩阵句法泡沫(MG-MSF)的不同制造技术。这些技术包括搅拌铸造,崩解熔体沉积,粉末冶金和熔融浸润。审查全面分析了微观结构规范,机械性能和腐蚀行为,该腐蚀行为由迄今为止制造的MG-MSF所展示。的发现表明,这些泡沫的特性,包括微型结构特征,机械性能和腐蚀行为,受到诸如填充颗粒量和特性,MG合金规格,制造技术,过程参数和后处理处理(例如退伍和sineering和sentering)等因素的显着影响。这些因素在确定句法泡沫的最终特征中起着至关重要的作用。尽管MG-MSFS具有重要的重要性和潜力,但在该领域中存在有限的研究体系。因此,要全面理解这些结构是必要的,这将有助于其在工业和生物医学应用中的有效利用。
复合材料的力学性能并不令人满意,最初认为是由于Al层和Ag基体之间的相互扩散所致[22]。2011年,Gogotsi和Barsoum[23-24]合作通过从母体Ti3AlC2中选择性刻蚀掉Al原子平面,制备出一种具有二维结构的新型碳化物材料(Ti3C2Tx),称为MXenes。目前,Ti3C2Tx已受到许多应用领域的广泛关注[25-29]。Ti3C2Tx具有大的比表面积、良好的电导性、导热性和亲水性[30],是一种很有前途的导电复合材料增强体。具体来说,Ti3C2TX 已展示出其作为聚合物(PVA、PAM、PEI、PAN 等)、陶瓷(MoS2、TiO2 等)和碳材料(CNT、MWCNT、CNFs 等)复合材料添加剂的潜力[31]。因此,导电 Ti3C2TX 有望增强 Ag 基体成为一种新型电接触材料。本研究探索了 MXenes 在电接触材料中的应用。采用粉末冶金法制备了 Ti3C2TX 增强 Ag 基复合材料,研究了其电阻率、硬度、机械加工性、拉伸强度、抗电弧侵蚀等综合性能,并与 Ti3AlC2 陶瓷增强 Ag 基复合材料进行了比较。对两类样品性能差异的机理进行了分析和总结。研究结果将为今后新一代环保型银陶瓷复合电接触材料的设计与制备提供重要数据。
本报告是在 NITI Aayog 成员(能源)V. K. Saraswat 博士的指导下编写的。Sh 下成立了一个技术小组。Rajnath Ram,NITI Aayog 顾问(能源),成员 Sh。M. A. K. P. Singh,CEA 成员(水电),Sh。Kuldeep Rana,科学家 E,MNRE,Sh。Neeraj Kushwaha,助理。BIS 主任,Dr. AS Prakash,Sr。CSIR-中央电化学研究所首席科学家,Karaikudi,Sh。Yogesh Sharma,印度理工学院鲁尔基分校能源存储实验室 (ESL) 教授,Raman Vedarajan 博士,国际粉末冶金和新材料高级研究中心 (ARCI) 高级科学家,印度海得拉巴。Abhijit Datta,Chakr Innovation 年度股东大会,Sushri Abhilasha Meena,Chakr Innovation,印度。P M Nanda,Greenko,G Ganesh Das 博士,TATA Power 合作与创新主管,印度。Bhupesh Verma,印度能源存储联盟经理,Deepanjan Majumdar 博士,NITI Aayog 成员 (能源) 办公室和印度。Manoj Kumar Upadhyay,NITI Aayog 能源副顾问,担任该小组的成员秘书。我们感谢所有其他利益相关者对“制定与化学无关的储能技术标准”报告的最终定稿做出的贡献。
增材制造 (AM) 工艺通过逐层沉积材料来构建机械零件 [1] 。在金属 AM 工艺中,粉末床熔合 (PBF) 的应用最为广泛 [2] 。PBF 方法使用激光或电子束将粉末床顶部的金属粉末层与下面的层熔合在一起。激光 PBF (LPBF) 的一个众所周知的应用是通用电气开发的尖端航空推进发动机内的燃油喷嘴,其中约 20 个零件的传统设计减少为单个 LPBF 构建 [3] 。虽然这些进步意义重大,但目前工业中的 LPBF 构建实践通常仅限于单一合金。相比之下,定向能量沉积工艺已用于制造金属复合材料,可用于生产需要多种材料的高度工程化机械零件 [4] 。 ODS 合金是一种金属基复合材料,其中纳米级氧化物可抑制高温下的晶粒生长,从而提供高温力学性能和高抗蠕变性[5]。ODS 铁素体合金作为耐辐射包层和结构材料的替代品,受到核工业的广泛关注。氧化物的小尺寸和高数密度导致了大量复合界面,这被认为可以消除点缺陷,防止缺陷在失效前聚集[6]。然而,由于颗粒的浮力,ODS 合金的铸造具有挑战性[7]。因此,传统的粉末冶金法用于生产 ODS
摘要 要达到设计性能所需的材料需要能够提供金属、陶瓷和金属陶瓷化学成分的配方和加工方法,这些成分必须在源头进行精细调整,并能耐受下游的热机械调整。研究人员不断利用计算热力学模型和改进的热机械处理技术开发结构钢和金属陶瓷,目前正在评估基于 8%–16% wt.% Cr 的氧化物弥散强化钢 (ODS) 还原活化铁素体-马氏体钢 (RAFM)。SiC f 和 CuCrZr 的组合作为含有活性冷却剂的金属基复合材料将被视为一个重大机遇,此外,由 SiC 纤维增强 SiC 基体且能够与金属结构连接的复合陶瓷材料在先进热交换器的开发中具有巨大潜力。继续讨论先进制造的主题,使用粉末冶金热等静压和放电等离子烧结等固态加工技术来生产金属、陶瓷和金属陶瓷的近净成形产品是关键的制造研究主题。增材制造 (AM) 用于生产金属和陶瓷部件现在正成为一种可行的制造途径,通过 AM 和减材加工的结合,可以生产出其他任何工艺都无法制造的高效流体承载结构。将其扩展到使用电子束焊接和先进的热处理来提高同质性和提供模块化,现在可以使用双管齐下的解决方案来提高能力和完整性,同时为设计师提供更大的自由度。
异质结构 (HS) 材料由于其多种微观结构和优异的物理性能而受到广泛研究[1 e 5]。它们由不同性质的软硬异质区组成,不同区域之间的协同效应可改善物理性能。HS 材料根据硬区形状可分为层状结构[6,7]、梯度结构[5,6,8,9]、层压结构[10 e 13]、双相 (或多相) 结构[14 e 19]和核壳结构[20 e 22]。十年来,另一种互连 (或互穿) 结构一直受到人们的关注。这种结构具有双连续的两个不同的区域,其中硬相和软相都是连续的且相互交错。这种独特的结构包括胞状结构(如螺旋状结构)和由旋节线分解形成的空间无序模式。双连续结构的软区和硬区在机械上互相约束。增材制造[23,24]和粉末冶金[25,26]已用于开发互连的HS材料。然而,这些方法在区域大小及其分布方面存在技术限制。纳米级区域和均匀分布对于提高协同效应至关重要。最近,作者提出,通过液态金属脱合金(LMD)合成的3D互连HS材料在克服强度-延展性权衡方面具有巨大潜力[27]。从(FeCr)50Ni50前驱体中,可混溶的Ni选择性地溶解在Mg熔体中。
目的:在工业 4.0 发展现阶段发挥关键作用的技术中,传统粉末工程技术非常重要。在全面文献综述的基础上,描述了使用金属、合金和陶瓷粉末的传统技术。指出了其中最广泛的发展前景。设计/方法/方法:对传统粉末工程技术进行了广泛的文献研究。通过使用知识工程方法,指出了各个技术的发展前景。结果:除了介绍传统的烧结技术方法外,还介绍了占烧结产品商业价值 90% 的固态和液相烧结中的烧结机理。原创性/价值:根据增强的整体工业 4.0 模型,许多材料加工技术,其中包括传统粉末工程技术,在当前工业发展中发挥着关键作用。因此,根据现有文献资料对这些技术进行了详细描述。关键词:粉末工程、传统粉末制造方法、粉末冶金、液相和固态烧结、粉末产品制造、整体增强型工业 4.0 模型对本文的引用应以以下方式给出:LA Dobrzański、LB Dobrzański、AD Dobrzańska-Danikiewicz,工业 4.0 阶段使用金属、合金和陶瓷粉末的传统技术概述,材料与制造工程成就杂志 98/2 (2020) 56-85。DOI:https://doi.org/10.5604/01.3001.0014.1481
摘要 功能梯度材料 (FGM) 是一种特殊类型的先进复合材料,具有独特的功能和优势。FGM 的主要特性是其成分和微观结构在其维度上逐渐变化,从而增强了性能。FGM 由两种或两种以上的材料组成,以根据 FGM 的应用实现所需的特性。因此,FGM 在众多应用中引起了极大的兴趣。本文回顾了各种制造技术、分类及其在假肢领域的应用。 关键词:功能梯度材料 (FGM);加工技术;分类;应用;假肢。 1. 简介 纵观历史,从第一个人类到现在,材料一直在人类的生活中发挥着重要作用。在不同的时代,人类使用从自然界获得的不同材料或为了方便在许多应用中使用而人工制备的材料。虽然材料的特性是固有的,但它们可以通过多种方式改变。例如,通过组合材料或改变材料的底层结构。自古以来,人们就通过加工来改变材料的性能。合金化是将一种金属在熔融状态下与其他金属或非金属相结合,使其具有不同于母体材料的性能。人类历史上出现的第一种合金是青铜,它实际上是铜和锡的合金。青铜发明于公元前 3500 年,因此这个时代被称为青铜时代 [1]。然而,这种方法有局限性,即由于热力学平衡极限 [2],可溶解在另一种材料溶液中的材料量有限,并且禁止将熔点相差很大的两种不同材料合金化。为了克服这个问题,人们使用了粉末冶金 (PM) 方法,其中合金以粉末形式生产。这种方法具有优异的性能,但它有一些
• 在洁净煤技术方面,国际粉末冶金和新材料高级研究中心 (ARCI) 制备了一层薄金属陶瓷涂层,该涂层采用 HVAF 技术沉积在泵轴套的内外表面,用于组件级演示和 ODS 铁铝化物粉末填充罐(直径 72 毫米,长 200 毫米),共 7 个,并进一步交付给核燃料综合体进行镦锻和热挤压。在与低膨胀玻璃陶瓷 (LEGC) 设施和实现相关的 DRDO-ISRO 项目下,开发了一套用于激光陀螺仪应用的玻璃块,并交付给 DRDO 进行光学鉴定。• ARCI 于 2024 年 5 月 3 日与 M/s. Altmin Pvt Ltd., Hyderabad 签署了技术转让协议,用于制造锂离子电池的磷酸铁锂 (LFP) 阴极粉末材料(印度境内非独家权利)。 • 纳米和软物质科学中心 (CeNS) 的研究人员利用一种新型聚合物纳米复合材料制造了柔性压电能量发生器和道路安全传感器。原型设备显示出出色的功率密度。作为道路安全和智能门传感器的实时演示证明,这种新型聚合物纳米复合材料将成为开发高效、灵活和灵敏的能量收集和压力传感设备的潜在候选材料。 • 复合氧化物,尤其是尖晶石铁氧体,由于其可调节的物理化学性质,已成为传统二元氧化物半导体的有前途的替代品。CeNS 的研究人员开发了一种高性能 NOx 传感器,该传感器有可能通过利用 ZnFe2O4 (mZFO) 的混合尖晶石结构来克服现有传感设备的局限性。
PG2024 ARC561 Environmental Studies 24 390 PG2015 ARC651 specialist studies 11 390 PG2015 CEI607 River Engineering 8 173 PG2024 CEP532 Traffic Studies and Analysis 7 173 PG2024 CEP563 Environmental Engineering and Pollution Control 5 173 PG2015 CEP582 Traffic Studies and Analysis 1 173 PG2015 CEP636 Advanced Airport Planning and Design 5 173 PG2015 CEP649 Railway Freight Transport Systems 1 173 PG2015 CEP664 Advanced Domestic Wastewater Treatment 2 173 PG2015 CEP670 Wastewater Treatment Modeling 1 173 PG2024 CES541 Behavior of Steel Structures 29 148 PG2015 CES553 Behavior of Steel Structures 12 148 PG2024 CES617 High Rise Buildings 1 148 PG2015 CES661项目规划和控制6 334 PG2024 CES673项目计划和控制4 334 PG2015 CSE608高级软件工程12 331 PG2024 CSE631高级软件工程工程84 328,331 PG2015 ECE511 PG2015 ECE511计算机设计24 149 149 PG2024 99 PG2024 99 pg2024 pg2024 pg2024 pg2024 99 PG2015 ECE641数字信号处理应用程序9 149 PG2024 EPM551电力电子系统8 334 PG2024 MCT543先进的自主系统设计38 337 PG2015 MDP627 MDP627粉末粉粉粉末冶金 12 290 PG2024 MEP622 Solar energy and thermal converters 15 290 PG2015 MEP691 Solar energy and thermal converters 2 290 PG2015 MEP693 Biomass energy 8 290 PG2024 PHM643 Physics of Semiconductor Devices 1 291 PG2024 UPL522 City System and Urban Metabolism 7 291 PG2015 UPL654可持续城市表格5 291 PG2024 UPL541景观结构:理论与实践(3小时)9 291 PG2015 UPL618景观:理论与实践(3小时)2 291