有许多因素可能会影响电池的降解行为,例如充电循环的数量或充电率。在这里,我们研究了工作温度对锂离子正极电极中微结构结构降解的影响。为此,微型结构的特征是在不同工作温度下在6C(10分钟)下循环的阴极,即20℃,30°C,30°C,40°C和50°C,每种工作条件扫描扫描电子显微镜(SEM)图像(SEM)图像的crossection Elector Simarcopoy(SEM)图像。5 mn 0。3 CO 0。2 O 2(NMC532)电极,以确定结构描述符,例如全局颗粒孔隙率,裂纹尺寸/长度/宽度/宽度分布,孔隙度以及单个颗粒的特定表面积分布。此外,已经部署了一种立体方法来研究局部粒子孔隙度,该孔隙度是距离粒子中心的距离的函数。结果表明,颗粒孔隙度随循环温度的升高而增加。粒子孔隙度在粒子中心最大,沿粒子半径降低至外部。粒子表面积在四个循环温度的老化条件下相似。
冷却宏观物质的质量运动对其量子基态一直是物理界的目标,因为它被认为是迈向跨量子效应的量子效应的第一步,例如对宏观尺度观察到量子效应 - 例如,通过对空间量子量的限制,也有4个单个大型大型粒子 - 通过偏离已知相互作用的偏差并检查新颗粒的假设以搜索新物理学[5-9]。对量子状态中巨大颗粒的重力作用的研究引起了人们的关注[10,11],因为这可能是通过实验通过实验来照亮量子力学和重力之间的相互作用的一种方法。可以理解,可以通过通过不同的悬浮方式将机械振荡器从其环境中脱离环境来实现量子状态的较大宏观量[12]。捕获和冷却大型(大于µm长度)颗粒到量子基态的运动极具挑战性。光学诱捕技术适用于捕获亚微米尺寸的颗粒,并且在悬浮的验光力学中已经使用了线性反馈技术将其冷却纳米颗粒至其运动基态[13,14]。最近,达到了两种元模式的同时基态冷却[15],即使大型ligo镜的运动也通过反馈[16]在接近量子基态的附近冷却[16],除了许多夹紧机械系统[17] [17]。然而,捕获场中光子的吸收和后坐力充当耗散极限,该极限与捕获粒子半径的第六功率缩放[18],并且通过与黑色身体和捕获激光辐射的相互作用的光学左右量子态在光学左旋中存在坚硬的脱谐度限制[19] [19] [19]。