摘要。在试飞期间,原型机载数字全息仪器 HOLODEC(云全息探测器)获取全息数据,对其进行数字重建,以获得冰粒的尺寸(等效直径在 23 至 1000 µ m 范围内)、三维位置和二维图像,然后使用自动算法计算冰粒尺寸分布和数量密度,几乎无需用户干预。全息方法具有样本体积大小明确且不受颗粒尺寸或空速影响的优点,并提供了一种检测破碎颗粒的独特方法。全息方法还允许将体积采样率提高到超过原型 HOLODEC 仪器的采样率,而后者仅受相机技术的限制。在云的混合相区域中获取的 HOLODEC 尺寸分布与试飞期间飞机上 PMS FSSP 探测器的尺寸分布非常吻合。利用沿光轴的深度位置检测破碎粒子的保守算法可从数据集中消除明显的冰粒破碎事件。在这种特殊情况下,与所有粒子的尺寸分布相比,当量直径为 15 至 70 µ m 的粒子的非破碎粒子的尺寸分布减少了大约两倍。
“越小越软”是强度的逆尺寸依赖性,违背了“越小越强”的原则。它通常由表面介导的位移或扩散变形引起,主要存在于一些超小尺度(几十纳米以下)的金属材料中。在这里,利用离子束辐照的表面改性,我们在更大尺寸范围(< ∼ 500 纳米)的共价键、硬而脆的材料非晶硅(a-Si)中实现了“越小越软”。它表现为从准脆性破坏到均匀塑性变形的转变,以及在亚微米级范围内随着样品体积的减小而屈服应力的降低。提出了一个硬核/超塑性壳的分析模型来解释人为可控的尺寸相关软化。这种通过离子辐照的表面工程途径不仅对于调整小尺寸非晶硅或其他共价结合非晶态固体的强度和变形行为特别有用,而且对于非晶硅在微电子和微机电系统中的实用性也具有实际意义。© 2023 由 Elsevier Ltd 代表《材料科学与技术杂志》编辑部出版。
外观黑色粉末气味无味的粉末熔点(倍增)3652-3697°C散装密度0.14 g /cm 3在水不溶稳定性中的溶解度> 3000°C中的3000°C热还原方法热化学粒子尺寸≤35微米≤35微米BET表面表面积1816.8±54 m 2 /g <54 m 2 /g <0.10 cm <10.10 CM
摘要:量子发射器和腔之间的强耦合相互作用为基本量子电动力学提供了原型平台。我们在此展示了亚甲蓝 (MB) 分子在室温下与亚波长等离子体纳米腔模式相干相互作用。实验结果表明,当 MB 分子发生氧化还原反应将其转化为无色亚甲蓝分子时,强耦合可以可逆地打开和关闭。在模拟中,我们展示了第二激发等离子体腔模式和共振发射器之间的强耦合。然而,我们还表明其他失谐模式同时有效地耦合到分子跃迁,产生不寻常的模式光谱偏移和极化子形成级联。这是可能的,因为等离子体粒子尺寸相对较大,导致模式分裂减少。结果为利用强耦合的主动控制的设备应用开辟了巨大的潜力。关键词:多模强耦合、强耦合控制、等离子体纳米腔、极化子形成
Property Values Remarks • Method Melting point / freezing point No data available None known Boiling point/boiling range (°C) No data available None known Flammability (solid, gas) No data available None known Flammability Limit in Air None known Upper flammability limit: No data available Lower flammability limit: No data available Flash point No data available Open cup Autoignition temperature No data available None known Decomposition temperature None known pH No data available None known pH (as aqueous solution) No data available无可用的运动运动粘度没有可用的数据,没有已知的动态粘度无可用的数据,无知的水溶解性无可用数据可用的数据可用的数据可溶解性无知的溶解性无可用的数据可用的数据可用的数据无知的分区无知的数据无可用的数据无可用的数据无知的蒸气密度无可用数据可用数据可用数据可用数据可用的数据可用的数据可用粒子的可用数据可用粒径<可用粒子尺寸<可用的数据范围a可用信息范围a可用信息范围a可用信息范围a可用信息范围a可用信息a可用信息<
Property Values Remarks • Method Melting point / freezing point No data available None known Boiling point/boiling range (°C) No data available None known Flammability (solid, gas) No data available None known Flammability Limit in Air None known Upper flammability limit: No data available Lower flammability limit: No data available Flash point No data available Open cup Autoignition temperature No data available None known Decomposition temperature None known pH No data available None known pH (as aqueous solution) No data available无可用的运动运动粘度没有可用的数据,没有已知的动态粘度无可用的数据,无知的水溶解性无可用数据可用的数据可用的数据可溶解性无知的溶解性无可用的数据可用的数据可用的数据无知的分区无知的数据无可用的数据无可用的数据无知的蒸气密度无可用数据可用数据可用数据可用数据可用的数据可用的数据可用粒子的可用数据可用粒径<可用粒子尺寸<可用的数据范围a可用信息范围a可用信息范围a可用信息范围a可用信息范围a可用信息a可用信息<
自古以来,在迅速发展的纳米技术领域中,人们就使用了多种纳米粒子。这些特征包括大小、形状、化学和物理特性。由于碳基纳米粒子尺寸小、表面积大,包括富勒烯、碳纳米管、石墨烯、氧化石墨烯和碳基量子点等,它们在包括生物医学应用在内的各个领域都引起了广泛关注。脂质双层形成称为脂质体的球形囊泡。磁共振成像 (MRI) 造影剂是氧化铁纳米粒子。这些材料具有卓越的机械、电、视觉和化学特性,非常适合药物和基因递送、生物成像和骨修复。然而,由于石棉的长宽比,人们开始担心潜在的石棉相关疾病。另一方面,陶瓷纳米粒子是日常生活中的常见材料,在骨修复、多尺度杂交和航空航天结构中发挥着至关重要的作用。这些纳米粒子可以通过模仿骨组织的纳米组成和纳米尺度特性来增强骨整合和骨骼发育,并增强骨传导和骨诱导能力。然而,陶瓷纳米粒子有可能产生氧化应激,这会导致网状内皮系统的刺激、心脏、肝脏和肺的细胞毒性以及附着细胞的毒性。此外,氧化应激、细胞损伤和基因毒性可能是由陶瓷纳米粒子产生的自由基引起的。金属纳米粒子表现出与分子系统相似的线性光学特性,但来自不同的物理过程。半导体纳米晶体 (NC) 由各种化合物制成,例如硅和锗。一妻多夫纳米粒子是大小约为 10 至 10000 纳米 (nm) 的粒子,可包含活性物质。它们可用于疫苗输送、基因治疗和用于治疗应用的聚合物纳米粒子(纳米药物)。
与化学物质不同,可以根据定义明确的分子结构和稳定的特性来识别该化学物质(例如,cas数,微笑),微型和纳米塑料颗粒(MNP)缺乏这种直接的分类。每个MNP都有自己的特征组合,包括聚合物组成,粒子尺寸(长度和宽度)以及形状以及形状以及物理化学特性,例如表面电荷,表面化学和塑料相关化学物质。此外,这些特征可能会随着时间而变化,特别是由于MNP暴露于自然环境时的退化过程。为了实现MNP的可靠危害和风险评估,有必要预测MNP的毒性,其性状组合尚未直接在实验室中进行测试。类似于将化学物质的分子结构与有毒结果联系起来的定量结构 - 活性关系(QSAR)模型,需要模型将MNPS性状与其毒性联系起来。最近收集的微塑料资源管理器(TOMEX)2.0数据库的毒性由290个发表的有关MNP对水生物种的效应的研究点的13,412个数据库组成,这为处理这项任务提供了独特的机会。使用TOMEX 2.0数据,我们对任务进行了机器学习模型,以预测未经测试的MNP的毒性(存在/不存在效果方向,有效浓度)。我们还比较了根据分配的质量分数根据研究质量过滤数据集时的预测是否发生变化。我们比较了两种机器学习算法(增强回归树和深神经网络)的预测性能,并使用可解释的AI(平均边缘效应)的方法来洞悉毒性结果与MNP特征,实验参数和物种特质之间的关系。最后,我们讨论了如何使用此类模型来预测MNP的环境相关混合物的毒性,以及它们如何在将来有助于毒性较小,更环保塑料材料的发展。
许多小分子抗癌剂由于药代动力学差,常常无法有效检测或治疗癌症。使用纳米粒子作为载体可以改善这一状况,因为纳米粒子尺寸较大,可以减少清除率并提高在肿瘤内的滞留率,但也会减慢它们从循环系统转移到肿瘤间质的速度。在这里,我们展示了一种替代策略,即分子造影剂和工程纳米粒子在肿瘤内进行体内分子组装,使较小成分的快速流入和较大成分的高滞留率相结合。该策略可使荧光造影剂在肿瘤中快速蓄积,比荧光标记的大分子或纳米粒子对照快 16 倍和 8 倍。诊断灵敏度是被动靶向纳米粒子的 3.0 倍,并且这一改善在注射 3 小时后实现。体内组装方法的优势在于小分子药物可在肿瘤内快速积累、循环时间要求更短、可在保持肿瘤成像灵敏度的同时进行全身清除,并且肿瘤中的纳米粒子锚可用于改变造影剂、治疗剂和其他纳米粒子的药代动力学。这项研究展示了纳米粒子在肿瘤内的分子组装,为未来设计用于医疗的纳米材料提供了新的基础。确定癌症的正确预后和治疗方案需要对肿瘤进行准确的分期和监测。目前的检测策略通常将灵敏的成像方式与造影剂相结合(1、2)。然而,这些方法在许多情况下无法检测到病变,通常是因为成像对比度较差(2)。这可以通过将造影剂与聚合物或纳米粒子连接起来的肿瘤靶向策略来改善。纳米粒子非常适合用作肿瘤靶向载体,因为它们的体内行为由其设计决定,并且它们能够通过增强的渗透性和滞留效应泄漏到肿瘤中并在肿瘤中积聚(3 – 7)。尽管有这些优势,但仍有几个障碍限制了基于纳米粒子的靶向策略进行有效的肿瘤检测。被动靶向需要大直径的粒子,但这同时限制了向肿瘤的运输,并且只有在循环中经过数小时后才会发生积聚(8 – 10)。主动靶向纳米粒子设计可以实现更快的积聚(11 – 13),但可能不适合检测抗原未表征或异质性因此不可靠的病变。最后,纳米粒子在体内循环和持续时间较长,引发了对诊断或治疗药物毒性的潜在担忧。因此,开发一种靶向策略将造影剂快速聚集到肿瘤中,而无需依赖抗原表征,也不会在体内长期存在,这将是有利的。纳米粒子通过肿瘤细胞外基质的运动主要依赖于扩散 (8)。我们实验室最近的一项体内研究表明,扩散运输受到较大粒径的限制,粒径为 100 纳米时可忽略不计。发现直径为 80 纳米的纳米粒子缓慢渗透到间质中,并在注射 24 小时后定位在渗漏血管的几个细胞长度内
简介:我相信,从多个角度理解问题可以找到最大的真理。我想了解周围的世界,我选择回答问题的两种语言是艺术和科学。对我来说,艺术的吸引力在于它如何完美地传达强烈的情感,而物理学令人难以置信,因为它可以简单有效地描述一个系统。小时候,我有很多关于雪花的小书,我对它们的对称性很着迷,我仔细研究了它们的生长模式和晶体结构。后来,在高中和大学期间,我被覆盖地球的各种晶体和地质构造所吸引。当时我没有足够的自我意识来意识到这一点,但很快就会明白,材料物理学的研究将完美地表达我对地质学、数学、艺术的兴趣,以及对理解我们世界的特殊性的陶醉。我现在准备在加州大学圣巴巴拉分校开始我的物理学博士学位,并开始我的量子材料世界的科学探索。凭借这一点以及我在美术方面的天赋,我将努力为科学问题带来独特的见解,并向公众和科学界传达艺术和我的研究的价值。 智力价值/研究经验:作为一名年轻的物理学家,我仍在探索如何最好地结合我对艺术和科学的兴趣,因此我很高兴尝试我的第一个机会:在桑迪亚国家实验室的应用光学和等离子体科学小组实习,在那里我沉浸在低温等离子体物理学的世界中。在这里,我学会了如何分析等离子体的激发光谱,并使用粒子内方法与直接模拟蒙特卡罗 (PIC-DSMC) 耦合来直接模拟带电粒子的多体系统。三年来,我与他们一起解决了各种问题,从在实验室中创建电场传感器到设计减速场能量分析仪。我最广泛的项目将等离子体电子在氮中散射的统计分布的 PIC-DSMC 模拟与玻尔兹曼方程的近似解进行了比较。我最广泛的项目将我们对等离子体离子统计分布的 DSMC-PIC 模拟与玻尔兹曼方程得出的数值计算进行了比较。我能够确定这两种技术最一致的能量状态,并确定对 PIC-DSMC 代码的潜在修正,以提高两种方法之间的一致性。作为我第一次以心理能力进行自由探索,我在桑迪亚度过的时光收获颇丰,因为我能够得出关于模拟数据中有趣怪癖的结论并提出自己的主张。我还被安排在一个环境中,在那里我对等离子体物理学这一主题知之甚少,但我被期望快速学习,而我确实学得很快。我获得了宝贵的经验,学会了审查研究论文和教科书,找出知识上的差距,然后找人和其他资源来帮助我弥补信息上的不足。每天我都兴奋地从床上跳起来去上班;我简直不敢相信我得到的报酬是学习我想要的一切,我知道这是适合我的工作。我还从我在桑迪亚的工作中发现,我最感兴趣的是等离子体中特定能态产生的光谱特性。我喜欢美术中为我的眼睛提供信息的光线可以深入了解现实的本质,我觉得通过进一步研究这个主题,我的艺术部分也有可能得到满足。我在桑迪亚的自我发现之路促使我沉浸在原子和粒子物理课程中;我想更好地理解这门科学,它似乎既能满足我对艺术和科学的兴趣,又能给我带来个人满足感。在这段时间里,我还沉浸在地球物理课程中,我开始意识到,如果我仔细观察,就有可能将我所学的一切结合起来。我在上地震力学课时才真正领悟到这一点——我们当时正在学习颗粒/粒子尺寸对固体裂纹扩展的影响。在课堂上,教授指出,非常大的裂缝