IAEA的法定目标之一是“寻求加速和扩大原子能对全世界和平,健康与繁荣的贡献”。实现这一目标的一种方法是通过出版一系列技术系列。其中两个是IAEA核能系列和IAEA安全标准系列。根据《国际原子能机构法规》第三条第6条,安全标准建立了“保护健康和最小化对生命和财产的危险的安全标准”。安全标准包括安全基本面,安全要求和安全指南。这些标准主要以监管方式编写,并且对IAEA的计划具有约束力。主要用户是成员国和其他国家当局的监管机构。IAEA核能系列包含旨在鼓励和协助研发的报告,并将核能应用于和平用途。这包括成员国公用事业公司的所有者和运营商,实施组织,学术界和政府官员等的实践示例。此信息在指南,有关技术地位和进步的报告中提供了,以及基于国际专家的投入的和平用途的最佳实践。IAEA核能系列补充了IAEA安全标准系列。通过研究原子核的结构的努力提示了第一个粒子加速器的出现。这项新发明的开发和改进迅速从“粉碎原子”转向了许多其他实际应用。尽管使用最大,最强大的加速器用于高能粒子研究,但医疗和工业应用已导致20世纪和目前的大部分加速器扩散。最普遍的机器是用于放射疗法的电子线性粒子加速器。质子和离子疗法加速器的使用继续迅速增长。对加速器的需求不断增加,在医学,行业和研究中产生了放射性核素,可确保该领域的扩大。在研究中,同步器和游离电子激光光源的使用促进了从固态物理学到生物学再到考古学的众多科学学科中的加速器应用,再次导致了这种设施的稳定增长。至于所有核设施,退役是加速器生命周期的必然终点。评估潜在挑战(包括工人和公众的放射学暴露),表征,拆除技术,生成和管理放射性废物,成本和现场再利用都是任何核设施退役过程的重要方面,包括住房加速器。在许多国家 /地区,加速器的监管方式与核反应堆或核燃料周期设施等核设施的方式相同,但是加速器的员工对废物管理和退役的了解可能比其他核设施的员工更少。在某些情况下,由于缺乏兴趣或不正确的看法,即他们的退役是优先级低的活动,因此加速器已被半放弃。在这种情况下,即使在退役时也可能忽略了最低要求和策略,从而导致不必要的成本,延误以及安全问题。本报告提供了有关选择和拆除加速器策略和技术的选择和实施的实用信息。这是为那些在该学科几乎没有经验的退役的人编写的。由于加速器的数量及其在IAEA成员国中的无处不在分布,IAEA已经认识到解决加速器退役的需求。尽管已经发布了在加速器操作期间解决放射学保护要求的几项指南出版物,但这些设施的退役尚未得到充分解决。本报告旨在为IAEA退役计划中的整个退役活动的整个退役活动的系统覆盖做出贡献。在已故的E. Fourie(南非)准备的最初草案之后,举行了一系列与国际专家的顾问会议,以审查,修改和最终确定该报告。特别感谢C. Griffiths(英国),他主持了两次顾问会议并审查了该草案的出版。负责此出版物的IAEA官员是核燃料循环和废物技术部的M. Laraia和V. Michal。
首先,我必须感谢受邀为“滑流”做出贡献。作为一名非飞行员,我很荣幸有机会与我们海军舰队航空兵的(前任和现任)成员进行交流。距离“澳大利亚皇家海军”(RAN)这个新国家被授予英联邦海军部队已有近 100 年。在过去的这些年里,无论是在和平时期还是在战争时期,RAN 都多次应邀前往我们的国家。每次我们都做好准备,为我们有充分理由自豪地享受的持续自由和民主做出重大贡献。2014 年,在我们参加第一次冲突一百周年之际,我相信 RAN 将处于能力的分水岭时刻。五年后,海军将投入使用两级战舰,为澳大利亚国防军提供显著增强甚至全新的能力。从 2014 年开始,我相信澳大利亚皇家海军将在几十年来首次实现真正平衡的兵力结构和先进的作战能力——可以说是自我们成立以来首次。海军将在 2014 年迎来三艘霍巴特级 7,000 吨级宙斯盾防空驱逐舰中的第一艘。此外,27,000 吨级两栖舰(直升机登陆舰 - LHD)HMAS CANBERRA 将于同年交付。每个级别的战舰都将为澳大利亚国防军提供一套能力,这将大大增强我们在联合任务组环境中有效作战的能力。在霍巴特级中,我们将能够大大拓宽我们在区域空战中的视野,并引入令人印象深刻的指挥和控制 (C2) 能力以及先进的水面、水下和打击系统。堪培拉级将标志着澳大利亚持续两栖或远征作战能力的出现。引入海上联合 C2 能力、用于船岸“连接器”的可淹没对接以及用于多飞机作战的令人印象深刻的航空设施将带来挑战和显著优势。凭借升级后的 COLLINS 级潜艇、新型多船员 ARMIDALE 级巡逻艇、HUON 级扫雷艇和扫雷潜水队、补给舰、大大增强的 ANZAC 级护卫舰、不断发展的海洋科学部队,当然还有我们的舰队航空兵,澳大利亚皇家海军将同时拥有超越以往任何时候的广度和深度。澳大利亚将拥有新一代海军 (NGN)。五年内有很多事情要做,我期待您的支持和贡献,以充分实现我们的 NGN。我们有很多值得兴奋的事情。问候 S. R. GILMORE 海军少将,RAN
J. Rodriguez-Pacheco 1 , R. F. F. F. M. M. M. M. M. M Curse 2, L. Panitzsch 2, St. Boden 2, St. I. I. Bötcher Böhm 2 , J. J. Blanco 1 , W Gutierrez 1 , D. K. Haggerty 3 , J. R. Heber 3 , B. Heber 2 , M. E Hill 3 , M. Jungling 2 , S. Kerem 3 , V. Knierim J. Lees 3,St.Liang 3,A。Greece 1,D Russu 1,I。Sánchez1,C S. Horbury 6,B。Clecker 16,K.-L。 Klein 8,E,O。Gevin 24,N。Gopalswamy 26,Y。主题10,St. Hofmeister 9,N。Vilmer 8,A。P. Walsh 7,L。Wang 13,M。Wiedenbeck 15,K。Wirth 14和Q. Zong Zong Zong Zong
最近,有研究表明,在非中心相对论重离子碰撞中,椭圆流 v 2 在有限快速度下会分裂,这是由于全局涡度所致。在本研究中,我们发现有限快速度下椭圆流的这种左右(即在撞击参数轴的两侧)分裂是由于非零定向流 v 1 所致,其分裂幅度 ≈ 8 v 1 (1 − 3 v 2 ) / (3 π )。我们还使用多相传输模型(该模型自动包含涡度场和流动波动)来确认 v 2 分裂。此外,我们发现,对于相对于一阶或二阶事件平面测量的原始 v 2 和 v 1(即在应用事件平面解析之前),v 2 分裂的分析预期都成立。由于 v 2 分裂主要是由 v 1 驱动的,因此它在零横向动量( p T )时消失,而且它的大小和符号可能对 p T 、中心性、碰撞能量和强子种类具有非平凡的依赖性。