COVID-19大流行导致了全球广泛的健康挑战。在这些挑战中,COVID-19的并发症(尤其是心血管并发症)的出现引起了极大的关注。这项研究解决了通过使用数据驱动的机器学习模型来预测从Covid-19的个体中心血管并发症的紧迫问题。进行了全面的分析,其中包括来自伊拉克各个地区的352例COVID后352例。相关临床数据,包括人口统计信息,合并症,实验室发现和成像结果。机器学习算法(包括[指定所采用的算法])被利用以构建预测模型。数据集分层为培训和测试子集,以严格评估模型性能。该研究的结果阐明了几个关键见解,例如鉴定特定合并症与发生后-19后心血管并发症发生的实质性关联。预测模型实现了值得称赞的准确率,灵敏度,特异性和其他相关性能指标,从而证明了他们在识别患者患上这种并发症风险增加的个人方面的功效。这种早期检测能力有望促进及时的干预措施,最终导致患者的预后改善。调查结果强调了对患者(尤其是具有可识别危险因素的患者)保持警惕的必要性。总而言之,这项调查强调了数据驱动的机器学习模型的潜力是预测Covid-19康复的个体心血管并发症的宝贵工具。此外,本研究提倡继续进行研究工作和验证研究,以完善这些模型,从而提高其在各种临床环境中的准确性和普遍性。
抽象的天然生物与周围的物理环境以及广泛的其他生物有密切接触。换句话说,虽然单个生物体构成了生态系统的一部分,但如果它们包括体内存在的各种微生物群落,但它也可以被视为单个生物本身就是建立一个单一的生态系统。 大多数动物都有消化道,喂养,消化,吸收,代谢,排泄和生活。消化道是一个稳定的环境,经常提供丰富的营养,并且居住了微生物。毫不夸张地说,成为动物意味着患有肠道菌群。 微生物的先进材料生产,分解和修饰能力不仅在生态系统中起重要作用,而且在人类社会中也以多种方式使用。特别是,近年来,已经揭示了肠道细菌深深地参与了人类疾病和身体健康,并且细菌在生物体中的多种生物学功能,即共生细菌,引起了人们的关注。 昆虫是人类到目前为止所描述的大多数生物多样性,并且是陆地生态系统的核心生物,但是大多数人都会不断或半稳定地在体内携带微生物。这种现象称为“内部共生”,因为它是一种以无与伦比的空间接近性建立的共生关系,因此观察到了极高的相互作用和依赖性。这些关系通常会创造新的生物学功能。通常,共生的微生物和宿主昆虫几乎彼此融合在一起,形成了一种复合物,好像它是单个生物体一样。同样适用于肠道共生。 共生关系出现了哪些新的生物学功能和现象?通过共同生活,如何将不同生物体的基因组和功能纳入单个生命系统的构建中?共同生活的意义和成本是什么?当个人和个人,自我和非自我融合在一起时会发生什么? 这次,我们将介绍环境适应的演化和机制,可以通过微生物共生,尤其是专注于晚期肠道共生。
Mobileye(NASDAQ:MBLY)基于人工智能,计算机视觉,映射以及集成的硬件和软件的世界知名专业知识,以其自主驾驶和驾驶员援助技术的发展来领导移动性的发展。自1999年成立以来,Mobileye就可以广泛采用先进的驾驶员辅助系统,同时开创了开创性的技术,例如REM™众包映射,True Redundancy™传感,责任敏感安全™(RSS™)驱动政策和驱动经验平台(DXP)。这些技术支持用于规模的产品组合,旨在释放移动性的全部潜力,提供从高级ADA到自动驾驶汽车的一系列解决方案。到2023年底,全球约有1.7亿辆汽车已配备了Mobileye技术。在2022年,Mobileye被列为一家与英特尔(NASDAQ:INTC)分开的独立公司,该公司保留了多数所有权。有关更多信息,请访问https://www.mobileye.com。
受微生物利用铁载体吸收铁的机制的启发,制备了四种不同的含有儿茶酚酸和/或异羟肟酸基团的典型人工铁载体配体的 Fe III 配合物,即 K 3 [ Fe III - L C3 ]、K 2 [ Fe III - L C2H1 ]、K[ Fe III - L C1H2 ] 和 [ Fe III - L H3 ]。它们被修饰在金基底表面 ( Fe-L /Au),并用作微生物固定化装置,可快速、灵敏、选择性地检测微生物,其中 H 6 L C3 、H 5 L C2H1 、H 4 L C1H2 和 H 3 L H3 分别表示三儿茶酚酸、双儿茶酚酸-单异羟肟酸、单儿茶酚酸-双异羟肟酸和三异羟肟酸类型的人工铁载体。利用扫描电子显微镜 (SEM)、石英晶体微天平 (QCM) 和电阻抗谱 (EIS) 方法研究了它们对几种微生物的吸附性能。在金底物 Fe-L C3 /Au、Fe-L C2H1 /Au、Fe-L C1H2 /Au 和 Fe-L H3 /Au 上修饰的人工铁载体-铁配合物表现出特定的微生物固定行为,并且基于人工铁载体的结构具有选择性。它们的特异性与微生物从细胞中释放或用来吸收铁的天然铁载体的结构特征很好地对应。这些研究结果表明,释放和吸收是通过人工铁载体-Fe III 配合物与微生物细胞表面受体之间的特定相互作用实现的。这项研究表明,Fe-L/Au 体系具有作为有效的微生物固定探针的特殊潜力,可以快速、选择性地检测和鉴定各种微生物。
摘要。全脑分割是将整个脑体积划分为解剖标记的感兴趣区域 (ROI),是脑图像分析中的关键步骤。传统方法通常依赖于复杂的管道,这些管道虽然准确,但由于其复杂性而耗时且需要专业知识。或者,端到端深度学习方法提供快速的全脑分割,但通常会由于忽略几何特征而牺牲准确性。在本文中,我们提出了一种新颖的框架,将以前由复杂的基于表面的管道使用但被基于体积的方法忽略的关键曲率特征集成到深度神经网络中,从而实现高精度和高效率。具体而言,我们首先训练一个粗略的解剖分割模型,重点关注高对比度组织类型,即白质 (WM)、灰质 (GM) 和皮层下区域。接下来,我们使用 WM/GM 接口重建皮质表面,并计算表面上每个顶点的曲率特征。然后将这些曲率特征映射回图像空间,在那里它们与强度特征相结合以训练更精细的皮质分割模型。我们还简化了皮质表面重建和曲率计算的过程,从而提高了框架的整体效率。此外,我们的框架非常灵活,可以将任何神经网络作为其主干。它可以作为即插即用组件来增强任何分割网络的全脑分割结果。在公共 Mindboggle-101 数据集上的实验结果表明,与各种深度学习方法相比,分割性能有所提高,速度相当。
摘要 — EEG 是一种功能强大且价格实惠的大脑传感和成像工具,广泛用于诊断神经系统疾病(例如癫痫)、脑机接口和基础神经科学。不幸的是,大多数 EEG 电极和系统的设计并不适用于非洲裔人群中常见的粗卷发。这可能会导致数据质量较差,在从更广泛的人群中记录数据后,这些数据可能会在科学研究中被丢弃,并且对于临床诊断,会导致不舒服和/或情绪紧张的体验,在最坏的情况下,会导致误诊。在这项工作中,我们设计了一个系统来明确适应粗卷发,并证明随着时间的推移,我们的电极与适当的编织相结合,可实现比最先进系统低得多(约 10 倍)的阻抗。这建立在我们之前的工作的基础上,该工作表明,按照临床标准 10-20 排列的模式编织头发可以改善现有系统的阻抗。
生物柴油的生产已成为全球努力替代化石燃料的重要组成部分。然而,生物柴油生产中面临的问题之一是甘油产量增加,作为一种产物。甘油或粗甘油(CG)通常是大量生产的,需要明智地管理。本文讨论了生物柴油生产中的甘油作为生物乙醇生产的原料的潜在利用。通过优化发酵过程,基因工程技术和纯化,可以将甘油转化为生物乙醇。生物乙醇是环保的可再生燃料之一。基因工程技术的进步还支持甘油转化为生物乙醇的成功,从而可以发展更有效和生产性的微生物。这为减少浪费,支持资源的可持续性并通过使用甘油作为生物乙醇的原料来减少浪费,支持化石燃料的依赖。将甘油转化为生物乙醇是迈向更可持续和可再生能源的一步。 关键词:生物乙醇,可再生能源,可持续性,基因工程将甘油转化为生物乙醇是迈向更可持续和可再生能源的一步。关键词:生物乙醇,可再生能源,可持续性,基因工程