摘要。可变形图像配准是医学图像分析中的关键步骤,用于找到一对固定图像和运动图像之间的非线性空间变换。基于卷积神经网络 (CNN) 的深度配准方法已被广泛使用,因为它们可以快速、端到端地执行图像配准。然而,这些方法通常对具有较大变形的图像对性能有限。最近,迭代深度配准方法已被用来缓解这一限制,其中变换以由粗到细的方式迭代学习。然而,迭代方法不可避免地延长了配准运行时间,并且倾向于在每次迭代中学习单独的图像特征,这阻碍了利用这些特征来促进以后的迭代配准。在本研究中,我们提出了一种用于可变形图像配准的非迭代由粗到细配准网络 (NICE-Net)。在 NICE-Net 中,我们提出了:(i) 单次深度累积学习 (SDCL) 解码器,可以在网络的单次(迭代)中累积学习从粗到细的转换;(ii) 选择性传播特征学习 (SFL) 编码器,可以学习整个从粗到细配准过程的常见图像特征并根据需要选择性传播这些特征。在 3D 脑磁共振成像 (MRI) 的六个公共数据集上进行的大量实验表明,我们提出的 NICE-Net 可以胜过最先进的迭代深度配准方法,而只需要与非迭代方法类似的运行时间。
图3:A:在280nm的粗反应混合物和两种反应的f disp中,归一化的HPLC曲线。b:原始数据HPLC曲线在400nm的粗反应混合物和两个反应中的F disp。c:这些HPLC剖面中两个主要峰的典型吸光光谱(保留时间为2.7和2.85分钟)。
可变形图像配准是医学图像分析的基本步骤。最近,Transformer 已用于配准,其表现优于卷积神经网络 (CNN)。Transformer 可以捕获图像特征之间的长距离依赖性,这已被证明对配准有益。然而,由于自注意力的计算/内存负载高,Transformer 通常用于下采样特征分辨率,无法捕获全图像分辨率下的细粒度长距离依赖性。这限制了可变形配准,因为它需要每个图像像素之间精确的密集对应关系。没有自注意力的多层感知器 (MLP) 在计算/内存使用方面效率高,从而可以捕获全分辨率下的细粒度长距离依赖性。然而,MLP 尚未在图像配准中得到广泛探索,并且缺乏对医学配准任务至关重要的归纳偏差的考虑。在本研究中,我们提出了第一个基于相关感知 MLP 的配准网络 (CorrMLP) 用于可变形医学图像配准。我们的 CorrMLP 在新颖的粗到细配准架构中引入了关联感知多窗口 MLP 块,该架构可捕获细粒度多范围依赖性以执行关联感知粗到细配准。对七个公共医疗数据集进行的大量实验表明,我们的 CorrMLP 优于最先进的可变形配准方法。
近年来,基于深度学习的目标检测取得了长足的进步。然而,由于域转移问题,将现成的检测器应用于看不见的域会导致性能大幅下降。为了解决这个问题,本文提出了一种新的由粗到细的特征自适应方法用于跨域目标检测。在粗粒度阶段,与文献中使用的粗糙的图像级或实例级特征对齐不同,采用注意机制提取前景区域,并通过在公共特征空间中多层对抗学习根据其边缘分布进行对齐。在细粒度阶段,我们通过最小化来自不同域但属于同一类别的全局原型的距离来进行前景的条件分布对齐。由于这种由粗到细的特征自适应,前景区域中的领域知识可以得到有效的迁移。在各种跨域检测场景中进行了大量的实验。结果是最先进的,证明了所提出方法的广泛适用性和有效性。
总结系统生物学中的一个主要挑战是了解基因调节网络(GRN)中的各种基因如何共同执行其功能和控制网络动态。在具有数百个基因和边缘的大型网络的情况下,该任务变得极为难以解决,其中许多具有冗余的调节作用和功能。现有的模型减少方法通常需要对动态系统及其响应动力学参数的详细数学描述,而动力学系统通常不可用。在这里,我们提出了一种用于使用基于合奏的数学建模,降低维度降低和通过Markov Chain Monte Monte Carlo方法优化基因的数据驱动的大grn,名为Sacograci的粗粒度大GRN,称为Sacograci。sacograci需要网络拓扑作为唯一的输入,并且可以抵抗GRN中的错误。我们通过合成,基于文学和生物毒素的GRN进行基准并证明其用法。我们希望Sacograci能够增强我们建模复杂生物系统基因调节的能力。
图 3 掺杂调控 vdW 异质结理论研究典型成果( a )结构优化后的 C 、 N 空位及 B 、 C 、 P 、 S 原子掺杂 g-C 3 N 4 /WSe 2 异质结 的俯视图 [56] ;( b )图( a )中六种结构的能带结构图 [56] ;( c )掺杂的异质结模型图、本征 graphene/MoS 2 异质结的能带结 构及 F 掺杂 graphene/ MoS 2 异质结的能带结构 [57] ;( d ) Nb 掺杂 MoS 2 原子结构的俯视图和侧视图以及 MoS 2 和 Nb 掺杂
Figure 12.1540-MeV 209Bi ion irradiation 1.7 × 10 11 ions/cm 2 TEM images of AlGaN/GaN HEMT devices: (a) Gate region cross-section; (b) The orbital image of the heterojunction region shown in Figure (a); (c) The image shown in Figure (a) has a depth of approximately 500 nm; (d) Traces formed at the drain; (e) As shown in Figure (d), the trajectory appears at a depth of ap- proximately 500 nm [48] 图 12.1540-MeV 209Bi 离子辐照 1.7 × 10 11 ions/cm 2 的 AlGaN/GaN HEMT 器件的 TEM 图像: (a) 栅极区域截面; (b) 图 (a) 所示异质结区域轨道图 像; (c) 图 (a) 所示深度约 500 nm 图像; (d) 在漏极形成的痕迹; (e) 如图 (d) 所示,轨迹出现在深度约 500 nm 处 [48]
粗钢是钢熔炼后的第一种固态,适合进一步加工和转化,可通过两种方式生产(图 1)。这两种工艺通常都遵循两个步骤:1)炼铁——用还原剂将铁矿石(氧化铁)还原为铁;2)炼钢——在炉中将铁转化为钢。更具体地说,这两种工艺使用:1)煤、高炉 (BF)、生铁(纯铁产品)和碱性氧气顶吹转炉 (BOF) 或 2) 合成气(合成气)——氢气 (H2) 和一氧化碳 (CO) 的混合物、竖炉或回转窑、直接还原铁 (DRI) 和电弧炉 (EAF)。目前,大约三分之二的粗钢是通过 BF-BOF 工艺生产的,该工艺使用高炉生产铁,然后使用 BOF 将铁转化为粗钢——其中很大一部分是高品质原始(非回收)粗钢。其余三分之一的粗钢由电弧炉生产。尽管电弧炉使用废钢生产当今大部分再生钢,但它们也可以使用直接还原铁生产原钢。
图 2-2 GAN 发展脉络 ...................................................................................................................... 3