aōer对蒙大拿州的气候pollus polductionpresipruɵs降低了向美国环境普罗旺斯机构(EPA)报告并在线发布,并在线发布,蒙大拿州环境质量部(DEQ)发现了在Greenhouse Gas(GHG)中的销售中的差异(GHG)在第4-5页上使用Eppales的工具,该工具与EPA的第4-5页相结合(按州按国家库存。在对问题的进一步分析后,DEQ发现了DEQ用来准备报告的SIT版本的数据输出的错误。实际上,EPA于2024年2月更新了SIT模块,AōerDeq准备了其库存。运行SIT的更新版本会稍微降低差异的差异。此correcɵon中的表都反映了更新的数据。
该细分市场的主要活动是使用可再生能源(包括风,水力,太阳能,生物量和废物到能源)的电力和热量产生,同时发展和运营新一代能力。从战略上讲,重点是能力的持续扩展,不仅在立陶宛,而且在周围国家的新项目的发展。我们目前的容量包括立陶宛(121兆瓦)的5个运营风电场,一个在波兰(94兆瓦),一个在爱沙尼亚(18兆瓦)。我们还保持着立陶宛的显着水力发电能力:Kruonis泵送储存水力发电厂(Kruonis PSHP)(900 MW)(900 MW)和Kaunas Hydreelectric Power Gitl(Kaunas HPP)(Kaunas HPP)(101 MW)。该小组在维尔纽斯(20 MWE,70 MWTH)和生物质单元(73MWE,169 MWTH)和KAUNAS(26 MWE,70 MWH)一起运营两个现代废物到能源的电厂。绿色生成细分市场的总安装能力为1,328兆瓦。大约55%,该集团在2023 - 2026年的投资中,将用于扩大绿色发电能力。我们的目标是到2026年达到2.2–2.4 GW的绿色生成能力,到2030年4-5 GW。
•海报1:AI用于气候变化的AI多危险空间 - 周期性的足迹(D. Ferrario,M。Masina,J。Furlanetto,M。Maraschini,M。Maraschini,M.Sanò,M.Sanò,A。Critto E S. Torresan) 15oc世界中的Po Valley上的热浪:驱动因素和影响 - Squintu,A.,McAdam,R.,Perez-Aracil,J.,Alvarez-Castro,C.,Scoccimarro,E。E.•海报4:扩展Era5-Downgan的应用到U.S. Geographical Manco I.,Riviera W.,Zanarta W.,Zantria A.•海报5:使用K均值算法确定极端每日降水的经常性模式:揭示因意大利半岛的气候变化而驱动的空间转移,Manco I.,Feitosa O. M.,Raffa M.,Raffa M.,Raffa M.,Schiano P.,Schiano P.,Rianna G.,Rianna G.,Mercogliano P.•Mercogliano P.使用K-Means,Duminuco P,Manco I.,Rianna g。,。F.,Mercogliano P.•海报7:Koopman的高级SST预测理论,P.L.-Sanchez,M.Newman,J.
Gabanintha Vanadium项目是一项提议,旨在通过开放坑开采开发多个钒矿床(北部和中部),其生产和加工速率在23年内每年高达400万吨矿石(MTPA)。该提案位于西澳大利亚州中部地区的Meekatharra 40公里(公里)。该提案的支持者是澳大利亚技术金属有限公司。该提案包括开发矿坑和相关的基础设施,包括废岩地面(WRL),矿化废物库存,加工厂,我的运行,综合废物地图(结合尾矿存储设施),钙化存储区域,矿山脱水厂,脱水设施,工厂,车间,综合场,综合建筑和关联的基础设施和关联的建筑物。提出了两种采矿场景;方案1(分别挖掘北部和中央沉积物)和方案2(在扩展的坑中一起挖掘北部和中央沉积物)。
加速过渡到碳中立性的另一种重要成分是可再生氢。是由可再生电的水电解产生的,现在这种气体是脱碳目标的核心:它可以以氢(或甲烷化过程后的甲烷)的形式存储可再生的电力,并脱碳,用于当前大量使用氢(氢,炼油厂,化学物质,以及其他难以以其他方式脱碳的工业领域(钢铁行业)。最后,可再生氢有望逐步有助于迁移率的脱碳,无论是随着合成燃料(海上,航空)的发展还是随着配备有燃料电池的“零排放”车辆的发展而发展的道路行动性。
© 2011 Emerald Group Publishing Limited。这是作者创作的版本,该版本已通过同行评审并被 Emerald Group Publishing Limited 的《航空工程与航天技术》接受出版。它采纳了审稿人的评论,但出版过程中产生的变更(如文字编辑、结构格式)可能不会反映在本文档中。已发布的版本可在以下网址获取:[http://dx.doi.org/10.1108/00022661111120953]。
1 https://ghgprotocol.org/sites/default/default/dandards/dandards/ghg-protocol-revise.pdf(第25页)2 https://ghgprotocol.org/sites/defiles/defiles/defiles/defiles/files/files/dandards/andandards/dandards/ghg-protot-colot-colot-colot-cocol-revise.pdf(Page 8888)1 https://ghgprotocol.org/sites/default/default/dandards/dandards/ghg-protocol-revise.pdf(第25页)2 https://ghgprotocol.org/sites/defiles/defiles/defiles/defiles/files/files/dandards/andandards/dandards/ghg-protot-colot-colot-colot-cocol-revise.pdf(Page 8888)