- 将SmartDrive添加到轮椅上可能会使它感觉与众不同。花时间习惯这种新感觉。- 始终检查您的SmartDrive,PushTracker / E3,附件硬件和SpeedControl Dial / SwitchControl按钮是否在每次使用之前缺少零件 /损坏[请参见“维护”部分,以获取零件以获取关注的零件]。- 使用前,请确保使用SmartDrive和PushTracker / E3 [如果使用]。- 始终密切关注您在轮椅上操作的表面,无论您的智能驾驶员是否亮着,因为轮椅的前脚轮都会陷入裂缝,车辙,孔,壁架等。遇到这些障碍可能会导致您从椅子上倾斜。- 不要在明显的粗糙地形,非常光滑的表面,极端斜坡或松散的地面上运行。这可能会导致牵引力丧失,从而导致您的SmartDrive受伤或损坏,并使保修无效。
我们提出了一种新颖的方式,将灵活的,与上下文相关的约束集成为组合优化,通过将大型语言模型(LLMS)与传统算法一起使用。尽管LLM擅长解释细微的,当地指定的要求,但他们在执行全球组合可行性方面挣扎。为了弥合此间隙,我们提出了一个迭代的微调框架,其中算法反馈逐渐完善了LLM的输出分布。将其解释为模拟退火,我们引入了一个基于“粗糙可学习性”假设的形式模型,为收敛提供了样本复杂性界限。对调度,图形连接和聚类任务的经验评估表明,与基线采样方法相比,我们的框架平衡了本地表达的约束的灵活性和严格的全局优化。我们的结果突出了混合AI驱动组合推理的有希望的方向。项目代码:https://github.com/pranjal-awasthi/test time-ft
在一个令人愉快的冬季早晨,年级前的学生欢乐地庆祝“橙色日”,穿着鲜艳的橙色阴影。他们在探索前面的橘子时互动了感官,将其连接到音声 /o /。将手指伸到皮肤上,他们使用触感感觉到了它的质地 - 光滑或粗糙 - 热情,他们吸入了柑橘味,决定它是甜还是酸味。展示了精细的运动技能,年轻的学习者小心地剥离了橙子,巧妙地揭示了内部多汁的片段。笑声充满了空气,有些人享受着果汁的感觉,他们的手指从手指上滴下。最后,学生们品尝了切片,通过分享的安静对话时刻创造出一种友善的感觉。这次庆祝活动不仅使他们沉浸在感官经历中,而且还鼓励了朋友之间的分享和社交互动。
位置 大马尼斯蒂克湖面积为 10,346 英亩(Breck 2004),位于密歇根州上半岛卢斯县和麦基诺县边界的马尼斯蒂克河流域(乡镇 44 和 45 N,范围 11 和 12 W)(图 1)。在卢斯县,赫尔默(莱克菲尔德乡镇)位于大马尼斯蒂克湖的东北岸。在麦基诺县,柯蒂斯(波蒂奇乡镇)位于大马尼斯蒂克湖的东南偏南,毗邻南马尼斯蒂克湖北岸。大马尼斯蒂克湖是马尼斯蒂克湖中最大的一个,也是密歇根州第七大内陆湖(Laarman 1976),平均深度为 10 英尺,最大深度为 23 英尺。地质和地理 大马尼斯蒂克湖位于马尼斯蒂克基岩地质构造内,该构造由一条薄薄的白云岩和石灰岩带组成,横跨三角洲县和麦基诺县 (MDNR 2001)。该地区的岩石类型主要是沉积岩,为大马尼斯蒂克湖的亲石产卵鱼类(如大眼鲷)提供了丰富的栖息地。大马尼斯蒂克湖周围的地表地貌主要由冰碛(45.6%)和湖泊/沙丘(16.6%)组成。细小的“沙丘”基质(如沙子)会填充正在发育的鱼卵和胚胎占据的间隙,从而对大马尼斯蒂克湖近岸产卵栖息地造成危害。大马尼斯蒂克湖附近的土地覆盖类型包括森林(40.7%)、湿地(37.0%)、水域(11.6%)、农业(4.8%)、城市(3.8%)、草地/灌木(1.8%)和荒地(0.3%)(图 2)。该地区的地表地质由大量粗糙(62.2%)的纹理材料以及无纹理的有机材料(37.8%)组成。粗糙纹理材料遍布整个湖泊,有助于提供近岸产卵栖息地。粗糙纹理材料还促进了湖泊较深区域的冷地下水交换,冷水物种和冷水物种(例如,分别是 Walleye 和 Cisco)都生活在那里。其余的湖岸由无纹理材料(沙子和有机材料)组成,地下水渗透性低到中等(Madison 和 Lockwood 2004)。大马尼斯蒂克湖周围的土壤类型以草本有机物和沙壤土冰川沉积物为主(USDA 2024)。岛屿群大马尼斯蒂克湖共有四个岛屿,包括福斯特岛、格林菲尔德岛、古尔岛和伯恩特岛,面积分别约为 8、2、1 和 1 英亩。其中一个岛屿(即格林菲尔德岛)已基本开发,其余三个则处于自然状态。流域描述大马尼斯蒂克湖北部的赫尔默溪和南部的波特奇溪水源(图 1)。赫尔默溪从北马尼斯蒂克湖向西南流入大马尼斯蒂克湖。位于赫尔默溪上的特雷斯勒大坝限制了湖泊之间上游鱼类的通道。波蒂奇溪从南马尼斯蒂克湖向东北流入大马尼斯蒂克湖,并设有水位控制
“立法剧院是一种创新,快乐且易于获得的方法,用于共同制定政策,将社区转移到所有人的公平,尊严和适当的住房中。势头一直在英国各地建立创意,基层参与式民主,而艺术与无家可归国际(AHI)一直处于该运动的最前沿,通过促进和支持立法剧院和类似的工具,通过这些工具,拥有无家可归的人经验的人们可以在塑造政策平台上获得无家可归的领导。Ahi,Haringey居民,我本人和Haringey Council之间的合作在范围内是雄心勃勃的,理事会坚定地致力于实施社区的想法。这些提议从那以后就进入了新的粗糙睡眠策略。ahi的倡导和文化组织实践对于带来这种具体的变化至关重要,我期待将来与他们合作,以推翻无家可归部门的政策制定中的权力动态,一次是一种表现。”
背景:肝细胞癌 (HCC) 是一种原发性肝脏恶性肿瘤,起源于肝细胞,通常发生于肝硬化环境中。HCC 患者的放射肝脏成像显示局灶性肝病变。然而,一种罕见的 HCC 变体在临床和放射学上没有表现,因为肝脏显示正常的肝脏回声,弥漫性粗糙回声纹理与肝硬化相符,并且没有局灶性病变。术前,这些患者被误诊为肝硬化,而不是 HCC。尽管肝移植后,肉眼可见弥漫性、无数结节,在显微镜下主要表现出良好至中等分化,具有假腺状和小梁状结构。通过免疫组织化学,肿瘤对 Glypican-3 呈弥漫阳性,CD34 显示窦状毛细血管化。两例显示血管侵犯。这种变体称为肝硬化样 HCC (CL-HCC)。 CL-HCC 发展为彻底弥漫的小肝硬化样结节与共存的肝硬化结节混合。
在半导体和绝缘纳米线和薄膜中,从边界粗糙度散射发出的降低的声子镜面P在较低的导热率中起主要作用。Although the well-known Ziman formula p = exp( − 4 σ 2 q 2 x ) , where σ and q x denote the root-mean-square boundary roughness and the normal component of the incident phonon wave vector, respectively, and its variants are commonly used in the literature to estimate how roughness attenuates p , their validity and accuracy remain poorly understood, especially when the effects of mode conversion cannot be ignored.在本文中,我们通过将其预测与从原子绿色功能(AGF)模拟中计算出的P值进行比较,从而研究了Ziman公式的更通用的Oggilvy公式的准确性和有效性,以获得单层石墨烯中粗糙边界的集合。分析了声子分散,入射角,极化,模式转换和相关长度的影响。我们的结果表明,对于0 ,Ogilvy公式非常准确
直布罗陀范围Waratah是一种高度高达3 m的大型直立灌木,一个或多个茎。它的淡绿色叶子是不规则的,显得弯曲了,比新南威尔士州瓦拉塔(Wares Waratah)更粗糙,每个叶子边缘的锯齿状3-11。叶子长8–28厘米,宽2–6.5厘米,崎and的毛皮下面是坚韧的,毛皮下的浮雕。上部和下叶表面都有突出的静脉。出现在春季的花序是大而深红色的。它们由一个大的圆顶花头组成,该圆顶头被片响起。有90到250个单独的花,构成花头/花序(Plantnet 2021)。这些之后是大种子豆荚(卵泡),最终将棕色变成棕色,并在内部露出开放的有翼种子。直布罗陀范围Waratah也因其粗糙的毛发和粗糙的叶子质地而与新南威尔士州瓦拉塔(Wares Waratah)区分开来(Crisp&Weston 1995)。
摘要 —本文提出了一种称为“模拟到现实到模拟”(Sim2Real2Sim)的新策略,以弥合模拟与现实世界之间的差距,并自动执行柔性物体操纵任务。该策略包括三个步骤:(1)使用粗糙环境和估计模型来开发在模拟中完成操纵任务的方法;(2)将模拟中的方法应用于现实世界并比较其性能;(3)根据现实世界和模拟之间的差异更新模拟中的模型和方法。选择了 2015 年 DARPA 机器人挑战赛决赛中的 Plug Task 来评估我们的 Sim2Real2Sim 策略。从现实世界到模拟,推导出一种用于构建线性柔性物体模型的新识别方法。模拟和现实世界中 DRC plug 任务的自动化证明了 Sim2Real2Sim 策略的成功。实施数值实验以验证模拟模型。
抽象的布里鲁因光散射(BLS)是一种非破坏性和非接触技术,为探测生物组织的微力特性提供了强大的工具。但是,生物组织的固有异质性在解释BLS光谱时会构成重大挑战。在这项研究中,我们引入了一种新型方法,该方法利用单个BLS频谱中的强度信息,以直接估计纵向模量的VOIGT平均值。此外,我们还使用一种方法来确定基于2D BLS图的全局分析,用于光固有异质样品的平方孔系数的比率。该方法显示出有效地确定人骨组织的软和硬成分的光弹性比,从而能够计算平均弹性模量。此外,它具有出色的能力,可以生成散射体积的填充因子的地图,从而在BLS映射下的粗糙表面的复杂结构和地形上散发出宝贵的光线。