最近发现的铜离子诱导细胞死亡新途径“杯状凋亡”表明,这种新途径具有治疗异质性和耐药性癌症的新治疗潜力。目前,基于铜离子载体的疗法已被设计用于治疗癌症,利用铜离子作为阻止肿瘤增殖和促进细胞死亡的战略工具。然而,基于铜离子载体的疗法的局限性包括铜离子的非靶向递送、肿瘤蓄积率低和半衰期短。增强特异性的策略包括使用基于纳米技术的药物靶向细胞内杯状凋亡机制。此外,探索联合疗法的重要性怎么强调也不为过,因为它们是提高癌症治疗效果的关键策略。最近的研究报告了纳米药物的抗癌作用,这些药物可以在体外和体内诱导癌症杯状凋亡。这些以杯状凋亡为靶向的纳米药物可以利用铜离子的药代动力学特性提高递送效率,从而增强基于杯状凋亡的抗癌作用。本综述将总结铜离子与致癌作用之间的复杂关系,探讨铜稳态及其失调在癌症进展和致死率中的关键作用。此外,我们将介绍针对铜凋亡的纳米药物在癌症治疗方面的最新进展。最后,我们将讨论基于铜凋亡的纳米药物面临的挑战,以期为未来的发展方向。
可以将某些物理演化视为微观离散模型的突发有效结果。受经典粗粒化程序的启发,我们提供了一种遵循 Goldilocks 规则的粗粒化色盲量子细胞自动机的简单程序。该程序包括 (i) 将量子细胞自动机 (QCA) 在时空上分组为大小为 N 的细胞;(ii) 将细胞的状态投射到其边界上,并将其与精细动力学联系起来;(iii) 通过边界状态描述整体动力学,我们称之为信号;(iv) 为不同大小为 N 的细胞构建粗粒化动力学。这个简单的玩具模型的副产品是斯托克斯定律的一般离散模拟。此外,我们证明在时空极限中,自动机收敛到狄拉克自由哈密顿量。我们在这里介绍的 QCA 可以通过当今的量子平台实现,例如里德堡阵列、捕获离子和超导量子比特。我们希望我们的研究能够为更深入地理解这些分辨率有限的系统铺平道路。
在采矿项目的所有阶段,样本收集,制备和分析都是重要的活动。野外样品收集后,质量和片段大小的降低,以提供一个子样本进行测定。在贵金属环境中,此过程可能特别具有挑战性,并且可能需要特定设计的协议。最大的挑战之一是确保在整个钻机中控制所有采样和子抽样错误以测定途径。在大多数情况下,主要采样误差(钻机和/或核心棚的误差)可能会淹没整个过程。在所有抽样阶段中也存在挑战。尤其是纸浆可能包含一些解放的,互面粉的金颗粒,要求对纸浆进行总共进行测定,以避免在分裂和处理过程中避免不必要的其他错误。Photonassay™是一种非脱脂和快速的黄金测定技术,能够以每小时约70个样品的速度分析粗粉碎(<3 mm)350-500 g样品。它可以分配快速测定的周转时间,需要较低的staķng水平才能进行操作,并消除了对铅或氰化物等化学物质的需求。这些特征使其适用于黄金矿石,尤其是那些粗糙的黄金,因为只需要粉碎(最少的释放金),并且可以测定多个批次。但是,如果没有优化任何采样阶段,将重新设置此优势。采样协议的优化来自理解矿化和所需的程序输出。它不仅是数学或统计过程,而且是一个复杂的过程,利用矿体知识(包括黄金驱逐出境研究)和采样理论的应用。
摘要 分子动力学 (MD) 模拟对于预测不同分子体系的物理和化学性质至关重要。虽然全原子 (AA) MD 提供了高精度,但其计算成本高昂,这促使了粗粒度 MD (CGMD) 的发展。CGMD 将分子结构简化为具有代表性的微珠,以降低成本,但会牺牲精度。像 Martini3 这样的 CGMD 方法,经过实验数据校准后,在各个分子类别中具有良好的泛化能力,但往往无法满足特定领域应用的精度要求。本研究引入了一种基于贝叶斯优化的方法来优化 Martini3 拓扑结构,使其能够适应特定应用,从而确保精度和效率。优化后的 CG 势能适用于任何聚合度,提供与 AA 模拟相当的精度,同时保持与 CGMD 相当的计算速度。通过弥合效率和精度之间的差距,该方法推动了多尺度分子模拟的发展,使各个科学技术领域能够以经济高效的方式发现分子。 1. 引言粗粒度分子动力学 (CGMD) 1,2 已成为材料开发的重要工具,为了解聚合物 3 、蛋白质 4 和膜 5 等复杂分子系统提供了关键信息。CGMD 的主要优势在于它能够在更大长度尺度和更长时间范围内探索分子现象,超越了传统全原子分子动力学 (AAMD) 6–8 模拟的能力,后者通常提供更高的分辨率,因此特别擅长捕捉详细的界面相互作用 9 。具体而言,CGMD 通过将原子团有效地表示为珠子 10–15 来实现这种加速,从而将模拟能力在时间上从皮秒扩展到微秒,在空间上从纳米扩展到微米。因此,粗粒度技术为传统 AAMD 无法获得的复杂分子现象提供了前所未有的洞察,从而能够研究聚合物自组装行为等复杂现象 16 。新兴的CGMD建模工具集依赖于两个关键组件来学习潜在的分子间关系:珠子映射方案和珠子间相互作用的参数化。这些组件的开发主要采用两种方法:自上而下10–12和自下而上13–
图1。ACSS sun sensor device ........................................................................................................................... 5 Fig 2.ACSS schematic ........................................................................................................................................ 5 Fig 3.Labeling ..................................................................................................................................................... 8 Fig 4.Angles reference ....................................................................................................................................... 8 Fig 5.Mechanical interface .................................................................................................................................. 9 Fig 6.Electrical interface ................................................................................................................................... 11 Fig 7.Signal acquisition recommended............................................................................................................. 11 Fig 8.Connector pin numbering ........................................................................................................................ 12 Fig 9.Spectral Responsivity .............................................................................................................................. 13 Fig 10.Sensor response of nominal and redundant units of ACSS .................................................................. 14 Tables
注意:截至本文件发布之日,上述活动与本文件相关。由于组织和职责可能会发生变化,您应使用 ASSIST Online 数据库(网址为 https://assist.dla.mil)验证上述信息的时效性。
执行摘要 目前,铜产量仅占全球温室气体 (GHG) 排放的一小部分(约 0.2%)。然而,该行业还需要扩大产量(包括到 2050 年将初级产量翻一番)以支持整体能源转型,因为铜是多项关键技术的重要组成部分,包括电动汽车、太阳能和风能发电以及输电基础设施。这种扩张加上减少铜供应链本身排放的挑战(包括淘汰大型卡车中的柴油或电气化高温热量),意味着,如果不进行干预,到 2050 年,该行业的温室气体排放量可能会占全球 2% 以上。本报告概述了在制定针对铜的 1.5°C 目标设定方法(即行业脱碳方法或 SDA)时需要解决的关键问题,类似于最近在钢铁和铝等其他行业开发的方法。 SDA 旨在为铜生产企业提供清晰的方法,以制定符合 1.5°C 目标的减排目标,这些目标既考虑到铜生产所需的增长,也考虑到该行业在脱碳方面面临的特定挑战。通过利益相关者访谈和对以前有关铜轨迹的出版物的审查,确定了在制定 SDA 期间需要解决的以下问题: