QS指定了一个细胞对细胞通信过程,该过程使细菌能够响应周围微幼崽群落的细胞密度和物种组成的变化来集体修改其行为。这些过程涉及细胞外信号分子的生产,释放和整个范围检测,这些检测通常称为自动诱导剂(AIS)。它控制着各种表型的各种基因,例如生物发光,毒力因子的se of se of caption and毒力因子和细菌中生物膜的形成。Quorum淬火抑制QS和抑制其抑制的物质被称为Quorum Sensing抑制剂。几种化合物和Zymes介导QS的抑制作用,例如乳糖酶,酰基酶和氧化还原酶。除此之外,还发现一些非酶促的甲基二氧化物Quorum Quenching,也发现了一些植物植物化学物质可以抑制它。通过QS抑制(QSI)阻止QS(QSI)可能在破坏相关感染和慢性耐药性感染的装置中的生物膜形成方面起重要作用。与QS和QSI有关的该领域进行了更多的研究。然而,已经发现某些化学物质正在模仿Quorum感测AIS的AIS活性,例如5-羟色胺和粘胶酸。
尊敬的利益相关者,2022 年是 Fedrigoni 实现盈利和负责任增长的又一年。我们灵活的商业模式、对创新的关注、不断转型以及全球员工的参与,使我们巩固了作为世界第一大葡萄酒标签和奢侈品包装特种纸制造公司的地位。除了财务业绩和价值创造之外,我们的目标——提升创造力,让材料成为世界各地品牌无限可能的源泉——是我们存在的原因。我们在战略计划的所有领域都取得了进展,这可以从我们卓越的业绩中看出*:调整后的营业额为 22.11 亿欧元(比 2021 年增长 37%),预测调整后 EBITDA 为 3.4 亿欧元(比 2021 年增长 54%)。尽管地缘政治环境不稳定,供应链中断,但我们在转型之旅中坚持不懈,在五大支柱上都取得了飞跃。首先,我们加快了产品创新流程,打造出越来越独特和优质的产品,同时通过塑料到纸张解决方案、使用越来越多可回收材料制成的自粘胶以及允许在新的价值链中将废物重新用作原材料的循环解决方案,支持我们的客户应对生态转型。其次,我们通过加快数字化转型流程和提高销售团队的技能,进一步改善了客户旅程中每个接触点的客户亲密度和体验。
锂 - 尼克尔 - 甲状腺 - 粘胶氧化物(NMC)嵌入了固体 - 电解质中的含有复合阴极,以与金属阳极的高能量密度相匹配。在充电/放电期间,阴极复合材料通常通过晶粒内的微裂缝,沿晶界的微裂缝进化以及在粒子 - 电解质界面处的分层来降解。实验证据表明,调节晶粒的形态及其晶体学取向是缓解体积扩张引起的应力和裂纹的有效方法,从而稳定了电极的电化学性能。但是,尚未对晶体方向,谷物形态和化学机械行为之间的相互作用进行整体研究。在这种情况下,开发了热力学一致的计算框架,以了解微结构调制对嵌入基于硫化物的固体电解质中的多晶NMC二级粒子的化学机械相互作用的作用。采用相位场断裂变量来考虑裂纹的启动和传播。采用了一组扩散的相位参数来定义晶粒,晶界,电解质和粒子 - 电解质界面之间的化学机械性能的过渡。此建模框架是在开源有限元包装驼鹿中实现的,以求解三个状态变量:浓度,位移和相位场损伤参数。这项研究的发现提供了设计固态电池的预测见解,这些电池可提供稳定的性能,并减少断裂的演变。进行了一项系统的参数研究,以探索长宽比,晶粒晶体方向的影响以及通过复合电极的化学机械分析的界面断裂能。
本研究旨在强调基于将安全的,pyrolectric纳米颗粒掺入纤维的新世代功能纺织品材料的适用性。具有负离子发射特性的合成纤维含有半颗粒的石材颗粒(电气石,独居石,蛋白石),陶瓷,木炭,锆粉,硫硫酸盐,钛酸盐和此类矿物质的混合物。目前,通过引入矿物质获得产生pyroelectric效应的合成纤维(例如超精美的电气石粉)在旋转或通过将矿物分散到旋转溶液中之前融化聚合物。作为聚合物,聚乙烯三乙酸酯,乙酸聚氯乙烯,聚酰胺和粘胶均已使用。在低量中,这些矿物质几乎对人类健康没有影响。大量包含,它们往往太贵了(电气石,蛋白石),纤维变得苛刻而脆弱。当前的FIR功能纺织品材料面临一系列技术挑战:某些使用的化合物是放射性的(单济族);如果颗粒尺寸太大(0.2-0.3µm),则可能导致产生高度不均匀的纤维,并早期磨损机械零件的安装;大多数商业pyroelectric织物都散发出低量的负离子(500-2600阴离子/cc)和FI射线,从而诱导低健康效应。涉及暴露于地球化合物的临床研究突出了对:血液循环,皮肤细胞再生,胶原蛋白和弹性蛋白的产生,睡眠调节,伤口的愈合和微循环的愈合和加速度的加速,慢性疼痛管理,慢性疼痛管理,血管内皮功能的改善,动脉粥样硬化的影响,动脉粥样硬化等<<<<
A. Grillone * , E. Redolfi Riva * , S. Moscato ** , R. Sacco *** , V. Mattoli * and G. Ciofani * * Italian Institute of Technology, CMBR@SSSA, Pontedera, Italy, gianni.ciofani@iit.it ** University of Pisa, Department of Clinical and Experimental Medicine, Pisa, Italy *** Pisa University意大利PISA胃肠病学系的医院摘要索拉非尼是一名抗癌药,该药物已获得食品和药物管理局的批准,用于治疗肝细胞癌和晚期肾癌。索拉非尼的临床应用有望,但受其不溶性和严重有毒副作用的限制。这项研究的目的是开发和表征索拉非尼负载的磁性纳米电炉,以在远程磁场的帮助下将药物输送到疾病部位。索拉非尼和超帕磁铁氧化铁纳米颗粒通过使用粘胶棕榈酸酯作为脂质基质将固体脂质纳米颗粒(SLN)封装在固体脂质纳米颗粒(SLN)中。在人肝癌HEPG2的体外评估生物学作用。我们的结果证实了可以通过索拉非尼细胞毒性作用杀死能够杀死癌细胞的稳定SLN的可能性,并得益于该药物的磁性积累来增强/定位在所需区域。关键字:固体脂质纳米颗粒,磁性纳米颗粒,索拉非尼,HEPG2 1简介多激酶抑制剂(MKI)Sorafenib(TradeNamenexavar®,Bayer)最近已获得FDA批准的,FDA批准了不可超过的肝癌和晚期肾carcinoma和先进的肾carccinoma(HCC)[1 1] [HCCC)[HCCC)]克服后一种缺点可能是最重要的改进之一临床前研究表明,索拉非尼通过几种抑制肿瘤血管生成并诱导肿瘤细胞凋亡的机制作用[2]。尽管证明了其生存益处,但索拉非尼仍可以导致重要的副作用,包括手和脚综合征,腹泻和高血压[3]。这项研究的目的是开发能够有效,有选择性地将索拉非尼提供给癌症病变的磁性纳米型,这要归功于磁性纳米颗粒介导的物理指导。拟议的系统可以通过将药物集中在目标位点的对应性中,可以选择性地传递索拉非尼。它的使用可以提高治疗的疗效,以避免前提到的副作用,例如药物as特异性生物分布,这可能会使健康组织暴露于药物作用。