摘要:氧化石墨烯(GO)在生命科学中受到了越来越多的关注,因为它具有各种应用的潜力。尽管GO通常被认为是生物相容性的,但在某些情况下可能会对细胞生理产生负面影响。在这里,我们证明,GO的细胞毒性取决于细胞粘附状态。在非粘附状态下的人类HCT-116细胞比处于粘附状态的细胞更容易受到影响。凋亡是通过在粘附和未粘附细胞中的GO部分诱导的,这表明凋亡诱导并不能解释GO的选择性作用对非粘附细胞的选择性作用。GO治疗迅速降低了非粘附细胞的细胞内ATP水平,但在粘附的细胞中却没有降低,这表明ATP耗竭是造成GO诱导细胞死亡的主要原因。同时,自噬诱导是能量稳态的细胞反应,在非粘附细胞中比在粘附细胞中更明显。总体而言,我们的观察结果为GO对细胞粘附状态的作用提供了新的见解。由于消除未粘附的细胞在预防癌症转移方面很重要,因此GO对非粘附细胞的选择性有害作用表明其在癌症转移中使用的治疗潜力。
这项研究介绍了一种直接的方法,用于使用两光子激光打印制造3D微结构细胞粘附和固定的多质质量。与现有策略相比,这种方法提供了自下而上的分子控制,高可定制性以及快速,精确的3D制造。基于可打印的细胞粘合剂PEG材料包括通过固相肽合成合成的含RGD的肽,从而可以精确控制肽设计。明显地,足以赋予细胞粘附性的RGD肽(<0.1 wt%)的最小量,同时将3D打印的微结构中的机械性能保持在3D打印的微观结构中,以使细胞固定的基于PEG的基于PEG的材料的机械性能。RGD肽的荧光标记促进了其在细胞粘附区域中的存在。为了展示我们系统的广泛适用性,我们展示了细胞粘合剂2.5D和3D结构的制造,从而促进了这些体系结构中成纤维细胞的粘附。因此,这种方法允许打印高分辨率的真实3D结构,适用于各种应用,包括复杂环境中的细胞研究。
本文所包含的信息被认为是可靠的,但没有任何形式的陈述,担保或保证就其准确性,适用于特定申请或要获得的结果。这些信息通常基于实验室的小型设备,不一定表明最终产品性能或可重现性。提出的配方可能没有进行稳定性测试,仅应作为建议的起点。由于在处理这些材料时商业上使用的方法,条件和设备的变化,因此没有对产品适用于披露的申请的适用性。全尺度测试和最终产品性能是用户的责任。Lubrizol Advanced Materials,Inc。不承担任何责任,并且客户对除Lubrizol Advanced Materade,Inc。的直接控制外的任何用途或处理任何材料都承担所有风险和责任。卖方不对明示或暗示的担保,包括但不限于对特定目的的适销性和适合性的隐含保证。本文中没有任何包含在未经专利所有者许可的情况下练习任何专利发明的授权,也不应将其视为诱因。Lubrizol Advanced Materials,Inc。是Lubrizol Corporation的全资子公司。soluplus®是巴斯夫的注册商标,Affinisol™是国际口味和香水公司或其分支机构的注册商标。
作为该项目的成员,贵国应加强其在样本收集,数据分析和解释方面的能力,并评估海洋中的放射性和非放射性污染,从而促进沿海社区的可持续和弹性发展。此外,通过加强这些领域的全球能力,通过该技术合作项目的IAEA可以帮助建立各种污染类型的库存和比率,植被沿海生态系统中的蓝色碳固执率,涉及生成知识和科学数据,从而有助于对影响海洋健康的过程有更好的了解。这将促进对海洋健康的更好理解,这可以为决策过程提供信息,并根据2030年的可持续发展议程来促进海洋的保护和保护。
黏膜粘附药物输送系统 (MDDS) 是一种将药物输送到目标部位的智能方法。在 MDDS 中,黏膜和聚合物类型在黏膜粘附现象中起着至关重要的作用。为了解释黏膜粘附背后的机制,人们提出了各种理论,例如电子、吸附、润湿、扩散和断裂理论。MDDS 对某些特定患者有益,尤其是儿科和老年患者。在为这些特殊患者群体开发任何输送系统时,都会面临若干挑战,例如掩味、剂量确定、剂型吐出、目标输送、药物的生物利用度、药物不良反应、毒性等。考虑到这些挑战,一些研究人员试图设计和制定 MDDS。本综述重点介绍黏膜粘附的基本概述、黏膜粘附的各种理论以及黏膜粘附聚合物。本综述的后半部分重点介绍儿科和老年患者的 MDDS 及其重要性。我们还讨论了针对老年人和儿科人群的不同专利配方和活跃的临床试验。
>下一代自动化设备>过程完全闭合>整个过程中受控环境>机器人控制的动作>操作员的数字双胞胎> PAT包括
引言小儿心肌病(CM)对应一组临床和遗传上异质性结构和功能障碍,影响心肌。小儿CM估计每年有100,000名儿童中有1个。扩张的CM(DCM),其特征是心室扩张和心肌连接性受损,是儿童中最普遍的亚型(1)。小儿CM的预后通常很差,尤其是在DCM中,因为大约一半的儿童需要心脏移植或在诊断后的头几年内死于心脏并发症(2)。通过下一代基因组测序的出现,对小儿CM的遗传基础的理解得到了显着改善(3)。实际上,属于心肌收缩,能量代谢和钙处理等各种分子途径的100多个基因的变体与儿科CM有关。但是,大多数报告的关联很少见,并且只有少数经过实验证实。
成熟的哺乳动物皮质由6个结构和功能上不同的躺物组成。该分层结构组装的两个关键步骤是胶质支架的初步建立以及随后将有丝分裂后神经元迁移到其最终位置。这些过程涉及神经细胞与底物的粘附和脱离的精确和及时调节。尽管对神经元迁移过程中粘合剂的作用和神经胶质支架的形成知之甚少,但了解这些信号如何解释和整合在这些神经细胞中。在这里,我们提供了体内证据,表明CAS蛋白是一个细胞质适配器家族,在皮质层压过程中起功能和冗余作用。CAS三重条件敲除(CAS TCKO)小鼠表现出严重的皮质表型,具有鹅卵石畸形。分子上毒和遗传实验表明,CAS蛋白在跨膜dystroglycan和β1-1-整合素的下游以径向神经胶质细胞自主的方式作用。总体而言,这些数据在形成皮质电路期间为CAS适配器蛋白创建了新的和重要的作用,并揭示了控制皮质支架形成的信号轴。
1 Curtin医学院,Curtin University,Bentley,WA 6102,澳大利亚; a.vanalin@postgrad.curtin.edu.au(A.V.A。 ); homayoun.fatholhzadeh@curtin.edu.au(H.F.); Christian.tjiam@uwa.edu.au(M.C.T。) 2 2地球科学研究所,地球与行星科学学院,科廷大学,班特利,华盛顿州宾利,澳大利亚36102,3 Wesfarmers疫苗和传染病中心,Telethon Kids Institute,Telethon Kids Institute,Nedlands,WA 6009,澳大利亚澳大利亚儿童健康研究中心,西澳大利亚州澳大利亚大学,澳大利亚大学,澳大利亚大学,澳大利亚大学,澳大利亚大学,澳大利亚大学,澳大利亚大学4号。 48149Münster,德国6 WA矿业学院,矿产,能源和化学工程,Curtin University,Curtin University,Waterford,WA 6152,澳大利亚; jacques.eksteen@curtin.edu.au(J.E。 ); anna.kaksonen@csiro.au(A.H.K.) 7 CSIRO环境,佛罗里达州佛罗里达州6014,澳大利亚8伊迪丝·考恩大学,伊迪丝·考恩大学,澳大利亚乔达拉普,澳大利亚6027,澳大利亚 *通信:e.watkin@ecu.edu.edu.au1 Curtin医学院,Curtin University,Bentley,WA 6102,澳大利亚; a.vanalin@postgrad.curtin.edu.au(A.V.A。); homayoun.fatholhzadeh@curtin.edu.au(H.F.); Christian.tjiam@uwa.edu.au(M.C.T。)2 2地球科学研究所,地球与行星科学学院,科廷大学,班特利,华盛顿州宾利,澳大利亚36102,3 Wesfarmers疫苗和传染病中心,Telethon Kids Institute,Telethon Kids Institute,Nedlands,WA 6009,澳大利亚澳大利亚儿童健康研究中心,西澳大利亚州澳大利亚大学,澳大利亚大学,澳大利亚大学,澳大利亚大学,澳大利亚大学,澳大利亚大学,澳大利亚大学4号。 48149Münster,德国6 WA矿业学院,矿产,能源和化学工程,Curtin University,Curtin University,Waterford,WA 6152,澳大利亚; jacques.eksteen@curtin.edu.au(J.E。 ); anna.kaksonen@csiro.au(A.H.K.) 7 CSIRO环境,佛罗里达州佛罗里达州6014,澳大利亚8伊迪丝·考恩大学,伊迪丝·考恩大学,澳大利亚乔达拉普,澳大利亚6027,澳大利亚 *通信:e.watkin@ecu.edu.edu.au2地球科学研究所,地球与行星科学学院,科廷大学,班特利,华盛顿州宾利,澳大利亚36102,3 Wesfarmers疫苗和传染病中心,Telethon Kids Institute,Telethon Kids Institute,Nedlands,WA 6009,澳大利亚澳大利亚儿童健康研究中心,西澳大利亚州澳大利亚大学,澳大利亚大学,澳大利亚大学,澳大利亚大学,澳大利亚大学,澳大利亚大学,澳大利亚大学4号。 48149Münster,德国6 WA矿业学院,矿产,能源和化学工程,Curtin University,Curtin University,Waterford,WA 6152,澳大利亚; jacques.eksteen@curtin.edu.au(J.E。); anna.kaksonen@csiro.au(A.H.K.)7 CSIRO环境,佛罗里达州佛罗里达州6014,澳大利亚8伊迪丝·考恩大学,伊迪丝·考恩大学,澳大利亚乔达拉普,澳大利亚6027,澳大利亚 *通信:e.watkin@ecu.edu.edu.au
传感表面与组织之间(4-6)。这要求设备具有柔软、可拉伸的特性,以适应曲线组织表面,同时电传感表面与组织之间具有稳定的粘合性。可拉伸生物电子材料和设备的开发已经取得了进展(7-12)。然而,对于需要电子材料与湿组织表面粘附性的界面粘合(13),成功率仅限于 10