一个关键的研究领域是如何确保分散的战场安全。在基辅战役中,一支众筹的乌克兰特种部队骑着四轮摩托,使用无人机成功骚扰了入侵者。72 一名 15 岁的乌克兰男孩用无人机精确定位了一支俄罗斯车队,拍摄到的画面导致 20 多辆俄罗斯军车被毁。73 “Dnipro 1”无人机情报部队可以在其飞行器上放置高达 800 克的炸药。74 6 月 22 日,一架无人机撞上俄罗斯罗斯托夫的新沙赫金斯克炼油厂,造成大爆炸,工厂停工。75 7月31日,一架疑似自制的无人机携带爆炸装置在克里米亚半岛俄罗斯黑海舰队总部爆炸,造成6人受伤,并导致俄罗斯海军节假期取消。76 7月12日,白宫表示,伊朗正准备向俄罗斯提供可能具有作战能力的无人机。77 甚至在战争爆发时
IBM 苏黎世研究实验室的科学家首次在室温下成功移动和精确定位单个分子。该过程被视为朝着在纳米尺度上进行各种“工程”迈出的重要一步,是使用扫描隧道显微镜 (STM) 的极细尖端完成的。它可以帮助将微型化发挥到极致,并为制造具有特定属性和功能的分子、构建超小型计算机甚至构建能够清洁或修复纳米级电子电路的微型分子机器铺平道路。扫描隧道显微镜是在 IBM 苏黎世研究实验室发明的,其发明者于 1986 年获得诺贝尔物理学奖,在创造这种“纳米宇宙”中发挥了重要作用。STM 不仅可用于以原子分辨率对表面进行成像,还可用于定位单个原子和分子。但是,还有一些问题需要克服。大多数原子和分子都粘附在表面和 STM 尖端上,因此很难以精确控制的方式拾取和释放它们。那些“粘性”较差的原子和分子往往会在室温下抖动和跳跃。虽然可以通过将样品冷却到接近绝对零度来克服抖动问题
工艺开发 在候选药物化合物的临床前和临床测试进行的同时,公司的工艺开发小组正在研究制造、纯化、表征药物物质以及将其配制成药物产品的多种可用选项。在此阶段,工艺不断发生变化。正在研究新的合成路线。评估新的回收和纯化选项。还探索替代配方。通常,大量科学家和工程师参与单个处理步骤的改进和优化。此时,模拟工具可以引入通用的沟通语言并促进团队互动。整个过程的计算机模型可以提供通用的参考和评估框架,以促进工艺开发。可以很容易地以系统的方式评估和记录工艺变化的影响。一旦有了可靠的模型,就可以使用它来精确定位复杂过程中最成本敏感的区域 - 经济“热点”。这些通常是资本和运营成本高或产量和生产吞吐量低的步骤。这些分析的结果可以用来明智地进一步关注实验室和
图论是数学领域图论所涵盖的主题之一,图论是由节点(有时称为顶点)通过边连接的数学结构。图论提供了一种在神经科学领域研究大脑中错综复杂的神经元互连网络的方法。在大脑网络图中,神经元由节点表示,它们的连接由边表示。研究人员可以使用图论技术来表征大脑网络的拓扑结构,并通过将网络可视化为图形来精确定位连接模式。为什么在神经科学中使用图论?图论是研究大脑组成和运作的越来越重要的工具。大脑由一个复杂的互连神经元网络组成,图论提供了一种理解该网络的技术,将其可视化为一个图形,其中神经元充当节点,它们之间的连接充当边。神经科学家可以使用图论来测量大脑网络的度分布、聚类系数和路径长度。这些特征揭示了大脑如何传递和处理信息。例如,研究表明,人类大脑具有小世界网络特征,包括高度的局部聚类和短路径
随着时间的推移,激光在生物医学研究和临床治疗中的应用呈指数级增长。NIH 展示了这一领域,从光学成像(超分辨率显微镜可以精确定位单个分子)到眼部激光治疗(激光治疗可能有助于降低某些患者失明的可能性),激光的应用范围十分广泛。随着涉及激光的新技术越来越多,直接使用激光或在激光周围工作的人员数量也在不断增加;NIH 的大多数研究所都使用激光。要充分认识到激光的好处,就必须让每个人都安全使用它们。在动物研究环境中,激光在从光学成像到动物手术的各种应用中都很常见。值得注意的是,实验室动物工作者并不排除在其工作空间中采用激光安全措施。无论动物研究人员是在成像过程中使用共聚焦显微镜还是进行动物激光手术,都必须安全使用激光。所有涉及激光使用的动物研究提案都将由激光安全官 (LSO) 审查。
“我们现在可以研究许多材料在相同极端压力下的反应,”SNAP 的发起人、桑迪亚国家实验室科学家艾丹·汤普森 (Aidan Thompson) 表示。“应用包括行星科学问题——例如,什么样的撞击应力会导致月球的形成?它也为在极端条件下设计和制造新型材料打开了大门。”极端压力和温度对材料的影响对于设计巨行星的内部模型也很重要。桑迪亚国家实验室的 Z 脉冲功率设施和劳伦斯利弗莫尔国家实验室的国家点火设施等强大的 DOE 设施可以在实验中重现这些星球的近乎相同的条件,这些实验可以近距离检查径向压缩材料。但即使是这些独一无二的强大机器也无法精确定位这些极端条件下关键的微观变化机制,因为在原子层面的诊断存在局限性。“只有计算机模拟才能做到这一点,”艾丹说。戈登贝尔奖入围作品是关于“一块微米大小的压缩钻石”
系统(GPS)信号确定登机上的精确定位和时机。与以仪表级准确性利用伪龙的先前作品不同,我们提出了一种精确的定位和计时技术,该技术利用毫米级的准确性来利用载载相 - 相位测量(当整数模棱两可正确地固定时)。我们设计了一个扩展的Kalman FIL TER框架,该框架利用间歇性可用的陆地GPS时间差异载体相(TDCP)值(TDCP)值和轨道过滤器预测的重力加速度。为了估算过程噪声协方差,我们实施了一种自适应状态噪声补偿算法,该算法适应了挑战性的月球环境,其重力较弱,并且每个涡轮型强大。此外,我们执行测量残差分析,以丢弃被周期滑动损坏并增加测量噪声损坏的TDCP测量。我们介绍了在椭圆形的月球轨道上的月球卫星的蒙特卡洛模拟,与唯一的导航解决方案相比,我们展示了更高的定位和时机准确性。
基于这一发现,美国于 1958 年启动了第一个卫星导航计划,名为 TRANSIT。该系统于 1964 年投入运行,利用多普勒效应确定位置,精度为 200 至 500 米,但它存在一些缺点:由于只有 6 颗卫星,无法每天 24 小时在全球任何一点进行定位,在某些情况下,可能需要长达 24 小时才能确定位置。为了克服这些缺点,美国军方开始思考如何创建一个更有效的系统,使人们能够每天 24 小时在全球任何一点高精度地确定位置、速度和时间。这项研究催生了当前的 GPS 系统,其全名是 NAVSTAR GPS(带时间和测距全球定位系统的导航系统的缩写)。第一颗原型 GPS 卫星于 1978 年发射,该系统于 1995 年投入运行,共有 24 颗卫星在轨运行。GPS 提供两种服务,第一种称为“精确定位服务”,仅供美国武装部队(及其盟友)使用;第二种称为“标准定位服务”或“开放服务”,性能水平有所降低,所有民用用户均可无限制使用。
我们州的第一个大地测量系统建立于 19 世纪末,现已发展成为一项现代基础设施资产,具有切实的经济、环境和社会效益。它可以精确定位和/或追踪建筑和自然特征的空间和时间,以及无缝集成独立来源的空间信息。如今,西澳大利亚 (WA) 大地测量系统是澳大利亚地理空间参考系统不可或缺的一部分,为澳大利亚所有测量、制图和定位应用提供基础框架。随着全球导航卫星系统 (GNSS) 技术与移动设备的广泛集成,大地测量系统支持数百万日常基于位置的应用程序用户。预计随时可用且准确的 GNSS 衍生定位,加上开放数据、高级分析和云计算,将实现更大的创新和提高生产力。精确的定位有助于提高当前和新兴应用(如空间数字孪生和智能城市)的空间能力。为了确保西澳拥有准确、可靠和相关的大地测量系统,Landgate 将继续维护其地面基础设施,提高定位精度,并增强数据质量和访问能力。 Dione Bilick Trish Scully
摘要:机载合成孔径雷达(Airborne Synthetic Aperture Radar,Airborne SAR)利用机载定位定向系统(POS)获取的飞行器飞行参数以及飞行器与目标的相对位置信息,对重点目标及区域进行精确定位。飞行过程中,飞行器会因为大气湍流等原因偏离理想飞行路径,导致计算结果与实际目标位置出现偏差。为了提高目标定位精度,需要研究飞行器运动误差对目标定位误差的影响。本文从线性距离-多普勒算法(RDA)的角度探讨了单视机载SAR的定位精度,并在多视机载SAR定位模型的基础上,推导了多视机载SAR定位误差传递模型。在此基础上,详细分析了影响两种定位方法定位精度的主要因素,定量揭示了多视角机载SAR定位方法较单视角机载SAR定位方法提高目标定位精度的机理,解决了多视角机载SAR优化定位的航向规划问题。研究成果可为定位误差影响因素分析及机载SAR定位误差校正提供理论支撑。