1 约克大学,英国约克大学2约克环境可持续性研究所,约克大学,约克大学,英国大学3勒沃尔姆人类人类生物多样性中心,约克约克,约克,英国大学4利兹卫生科学研究所,利兹大学,利兹大学,利兹大学,联合王国5.布拉德·金德福德,布拉德·金德福德,布拉德·金德福德,布拉德·金德福德。科学,赫尔约克医学院,约克,英国7人类发展与健康,南安普敦大学,南安普敦大学,英国南安普敦大学8国家健康研究所生物医学研究中心,南安普敦NHS基金会信托基金会,南安普敦,南安普敦,英国卫生经济学9中心。英国曼彻斯特曼彻斯特的心理健康NHS信托基金12心理学与心理健康部,曼彻斯特大学,曼彻斯特大学,英国曼彻斯特大学,英国13医学院,基尔大学,斯塔福德郡,英国斯塔福德郡,14英国心理学系,谢菲尔德大学,谢菲尔德,英国谢菲尔德大学,英国谢菲尔德,约克大学,英国约克大学2约克环境可持续性研究所,约克大学,约克大学,英国大学3勒沃尔姆人类人类生物多样性中心,约克约克,约克,英国大学4利兹卫生科学研究所,利兹大学,利兹大学,利兹大学,联合王国5.布拉德·金德福德,布拉德·金德福德,布拉德·金德福德,布拉德·金德福德。科学,赫尔约克医学院,约克,英国7人类发展与健康,南安普敦大学,南安普敦大学,英国南安普敦大学8国家健康研究所生物医学研究中心,南安普敦NHS基金会信托基金会,南安普敦,南安普敦,英国卫生经济学9中心。英国曼彻斯特曼彻斯特的心理健康NHS信托基金12心理学与心理健康部,曼彻斯特大学,曼彻斯特大学,英国曼彻斯特大学,英国13医学院,基尔大学,斯塔福德郡,英国斯塔福德郡,14英国心理学系,谢菲尔德大学,谢菲尔德,英国谢菲尔德大学,英国谢菲尔德,约克大学,英国约克大学2约克环境可持续性研究所,约克大学,约克大学,英国大学3勒沃尔姆人类人类生物多样性中心,约克约克,约克,英国大学4利兹卫生科学研究所,利兹大学,利兹大学,利兹大学,联合王国5.布拉德·金德福德,布拉德·金德福德,布拉德·金德福德,布拉德·金德福德。科学,赫尔约克医学院,约克,英国7人类发展与健康,南安普敦大学,南安普敦大学,英国南安普敦大学8国家健康研究所生物医学研究中心,南安普敦NHS基金会信托基金会,南安普敦,南安普敦,英国卫生经济学9中心。英国曼彻斯特曼彻斯特的心理健康NHS信托基金12心理学与心理健康部,曼彻斯特大学,曼彻斯特大学,英国曼彻斯特大学,英国13医学院,基尔大学,斯塔福德郡,英国斯塔福德郡,14英国心理学系,谢菲尔德大学,谢菲尔德,英国谢菲尔德大学,英国谢菲尔德,约克大学,英国约克大学2约克环境可持续性研究所,约克大学,约克大学,英国大学3勒沃尔姆人类人类生物多样性中心,约克约克,约克,英国大学4利兹卫生科学研究所,利兹大学,利兹大学,利兹大学,联合王国5.布拉德·金德福德,布拉德·金德福德,布拉德·金德福德,布拉德·金德福德。科学,赫尔约克医学院,约克,英国7人类发展与健康,南安普敦大学,南安普敦大学,英国南安普敦大学8国家健康研究所生物医学研究中心,南安普敦NHS基金会信托基金会,南安普敦,南安普敦,英国卫生经济学9中心。英国曼彻斯特曼彻斯特的心理健康NHS信托基金12心理学与心理健康部,曼彻斯特大学,曼彻斯特大学,英国曼彻斯特大学,英国13医学院,基尔大学,斯塔福德郡,英国斯塔福德郡,14英国心理学系,谢菲尔德大学,谢菲尔德,英国谢菲尔德大学,英国谢菲尔德,约克大学,英国约克大学2约克环境可持续性研究所,约克大学,约克大学,英国大学3勒沃尔姆人类人类生物多样性中心,约克约克,约克,英国大学4利兹卫生科学研究所,利兹大学,利兹大学,利兹大学,联合王国5.布拉德·金德福德,布拉德·金德福德,布拉德·金德福德,布拉德·金德福德。科学,赫尔约克医学院,约克,英国7人类发展与健康,南安普敦大学,南安普敦大学,英国南安普敦大学8国家健康研究所生物医学研究中心,南安普敦NHS基金会信托基金会,南安普敦,南安普敦,英国卫生经济学9中心。英国曼彻斯特曼彻斯特的心理健康NHS信托基金12心理学与心理健康部,曼彻斯特大学,曼彻斯特大学,英国曼彻斯特大学,英国13医学院,基尔大学,斯塔福德郡,英国斯塔福德郡,14英国心理学系,谢菲尔德大学,谢菲尔德,英国谢菲尔德大学,英国谢菲尔德,
胃肠道中肠道微生物的共生构成对宿主生理,福祉和疾病病理学的影响。更具体地说,肠道细菌能够与宿主选择的食物中的饮食成分相互作用,从而在本地和系统上传达其有益或不稳定的作用。肠道细菌具有维持健康的肠道微生物组或永久性肠道不平衡的能力,称为肠癌。肠道营养不良在胃肠道病理中既有局部影响,例如肠肠综合征(IBS)和肠道肠病(IBD),以及系统病理,例如II型糖尿病,肥胖症和精神疾病。可以通过肠道轴的机制改变肠道菌群的改变,可以进一步促进精神疾病的发生(例如,微生物代谢产物,神经内分泌系统,免疫系统)。由于暴露于与慢性压力有关的因素(例如学术工作负荷,乡下饮食和粮食不安全感),因此已经证明了精神疾病的风险在大学生中得到了加速(Beiter等,2015)。由于负担能力和可及性,粮食不安全的学生倾向于吸引低营养价值的食物。这些食物含有不健康的脂肪,糖,并且经过加工。这些不健康食品的饮食成分可能会有害改变肠道微生物组,从而导致局部病理和增加精神疾病的患病率。这篇综述的目的是研究肠道菌群在调节肠道轴的机制中了解其影响的生理和生物学作用,这受大学生在大学生中的某些饮食模式的调节。
摘要 影像遗传学为辨别遗传变异和大脑影像表型之间的关联提供了机会。从历史上看,该领域一直侧重于成人和青少年;很少有影像遗传学研究关注婴儿期和幼儿期(从出生到 6 岁)的大脑发育。这是一个重要的知识空白,因为产前和产后早期大脑的发育变化受动态基因表达模式的调控,这些模式可能在确定个体日后患精神疾病和神经发育障碍的风险方面发挥重要作用。在这篇综述中,我们总结了从婴儿早期到幼儿期的影像遗传学研究结果,重点关注研究神经精神疾病的遗传风险的研究。我们还介绍了婴儿成像基因组学组织 (ORIGINs),它是 ENIGMA(通过荟萃分析增强神经成像遗传学)联盟的一个工作组,旨在促进婴儿和儿童早期大规模成像遗传学研究。
摘要 影像遗传学为辨别遗传变异和大脑影像表型之间的关联提供了机会。从历史上看,该领域一直侧重于成人和青少年;很少有影像遗传学研究关注婴儿期和幼儿期(从出生到 6 岁)的大脑发育。这是一个重要的知识空白,因为产前和产后早期大脑的发育变化受动态基因表达模式的调控,这些模式可能在确定个体日后患精神疾病和神经发育障碍的风险方面发挥重要作用。在这篇综述中,我们总结了从婴儿早期到幼儿期的影像遗传学研究结果,重点关注研究神经精神疾病的遗传风险的研究。我们还介绍了婴儿成像基因组学组织 (ORIGINs),它是 ENIGMA(通过荟萃分析增强神经成像遗传学)联盟的一个工作组,旨在促进婴儿和儿童早期大规模成像遗传学研究。
抽象背景2型糖尿病在严重精神疾病(SMI)中的常见2-3倍。自我管理至关重要,SMI患者面临着其他挑战。因此,对于有SMI的人来说,任何糖尿病的自我管理计划都必须解决患有这两种状况的人的独特需求以及他们在医疗保健服务中遇到的不平等的独特需求。目标我们结合了理论,经验证据和共同设计方法,以为SMI患者开发2型糖尿病的自我管理干预。方法包含四个步骤的开发过程:步骤1涉及优先考虑行动机理(MOA)和行为改变技术(BCT)的干预措施。使用主要定性研究和系统评价中的发现,我们选择了候选MOA来靶向干预措施,并选择使用候选BCT。专家利益相关者随后在两阶段的调查中对这些MOA和BCT进行了排名。平均分数用于生成优先的MOA和BCT列表。在步骤2期间,我们将调查结果介绍给了专家共识研讨会,以同意干预措施的MOA和BCT清单,并确定潜在的交付方式。步骤3涉及使用步骤1和步骤2的证据开发触发膜。我们采用动画来介绍SMI管理糖尿病的人的经历。这些薄膜用于步骤4,我们使用了利益相关者共同设计方法。这涉及一系列结构化研讨会,其中通过理论和证据告知共同设计活动。结果
抽象成像遗传学为辨别遗传变异和脑成像表型之间的关联提供了机会。从历史上看,该领域一直专注于成年人和青少年。很少有成像遗传学研究集中于婴儿期和幼儿期(从出生到6岁)的大脑发育。这是一个重要的知识差距,因为在产前和产后早期的大脑的发育变化受动态基因表达模式的调节,这些模式可能在建立个人患精神病和神经发育障碍的风险中起重要作用。在这篇综述中,我们总结了从婴儿早期到幼儿期的成像遗传学研究的发现,重点是研究神经精神疾病的遗传风险的研究。我们还介绍了婴儿期成像基因组学组织(起源),这是一个谜团的工作组(通过荟萃分析增强神经成像遗传学)联盟,该联盟的建立旨在促进婴儿期和童年时期和幼儿的大规模成像遗传学研究。
摘要 影像遗传学为辨别遗传变异和大脑影像表型之间的关联提供了机会。从历史上看,该领域一直侧重于成人和青少年;很少有影像遗传学研究关注婴儿期和幼儿期(从出生到 6 岁)的大脑发育。这是一个重要的知识空白,因为产前和产后早期大脑的发育变化受动态基因表达模式的调控,这些模式可能在确定个体日后患精神疾病和神经发育障碍的风险方面发挥重要作用。在这篇综述中,我们总结了从婴儿早期到幼儿期的影像遗传学研究结果,重点关注研究神经精神疾病的遗传风险的研究。我们还介绍了婴儿成像基因组学组织 (ORIGINs),它是 ENIGMA(通过荟萃分析增强神经成像遗传学)联盟的一个工作组,旨在促进婴儿和儿童早期大规模成像遗传学研究。
神经精神疾病影响着全球很大一部分人口,迫切需要了解这些毁灭性疾病的发病机制并开发新的和改进的治疗方法。然而,多样化的症状加上复杂的多基因病因,以及人类大脑中与疾病相关的细胞类型的有限获取,是机械疾病研究的主要障碍。传统的动物模型,如啮齿动物,受到大脑发育、结构和功能固有物种差异的限制。人类诱导多能干细胞 (hiPSC) 技术的进步为神经精神疾病的新发现提供了平台。首先,基于 hiPSC 的疾病模型使在分子、细胞和结构层面上对精神疾病进行前所未有的研究成为可能。其次,来自已知遗传、症状和药物反应特征的患者 hiPSC 提供了重现相关细胞类型发病机制的机会,并为了解疾病机制和开发有效治疗方法提供了新方法。第三,基因组编辑技术扩展了 hiPSC 生成模型的潜力,以阐明罕见单基因和复杂多基因精神疾病的遗传基础,并确定基因型和表型之间的因果关系。本文我们回顾了使用各种 hiPSC 衍生模型系统研究精神疾病的机会和局限性。
摘要:已知无细胞DNA(CFDNA)水平在各种病理条件下增加生物流体。然而,关于精神分裂症,双相情感障碍(BD)和抑郁症(DDS)在内的严重精神疾病中循环CFDNA的数据是矛盾的。这项荟萃分析旨在分析精神分裂症,BD和DDS中不同CFDNA类型的浓度与健康供体相比。分别分析线粒体(CF-MTDNA),基因组(CF-GDNA)和总CFDNA浓度。使用标准化平均差(SMD)估算效果大小。八个精神分裂症的报告,四个BD,DDS的五个报告包括在荟萃分析中。但是,只有足够的数据可以分析BD和DDS中精神分裂症和CF-MTDNA中的总CFDNA和CF-GDNA。已经表明,精神分裂症患者的总CFDNA和CF-GDNA的水平显着高于健康供体(SMD值分别为0.61和0.6; P <0.00001)。相反,与健康个体相比,BD和DDS中的CF-MTDNA水平没有差异。尽管如此,由于BD研究中的样本量较小,并且DD研究中的数据异质性显着,因此需要进一步的研究。此外,还需要对精神分裂症或CF-GDNA的CF-MTDNA进行进一步研究,并且由于数据不足而导致的BD和DDS中的总CFDNA。总而言之,这项荟萃分析提供了第一个证据表明,精神分裂症中总CFDNA和CF-GDNA增加,但在BD和DDS中没有显示CF-MTDNA的变化。精神分裂症中循环CFDNA的增加可能与慢性全身性炎症有关,因为已经发现CFDNA触发了炎症反应。
使用非侵入性刺激 (NIBS) 技术治疗脑部疾病的想法可以追溯到几个世纪前,如今已成为现代神经病学和精神病学的主要治疗前景之一(Peruzzotti-Jametti 等人,2013 年;Rossini 等人,2015 年;Cambiaghi 和 Sconocchia,2018 年)。非侵入性刺激技术包括多种选择,包括经颅磁刺激 (TMS)、不同的经颅电刺激 (tES) 方法、迷走神经刺激 (VNS) 和聚焦超声刺激 (FUS)。这套技术已广泛用于研究中枢神经系统生理学和特定脑结构的功能作用,以及多种脑部疾病的现代治疗方法。本研究主题汇集了五份手稿,重点介绍了这一异质研究领域内的许多不同方面,从在生理条件下使用 NIBS 技术,如人类大脑增强或调节小鼠的神经可塑性和行为,到治疗神经病理学疾病,如阿尔茨海默病或轻度至中度创伤性脑损伤后的持续性创伤后症状。基于植入设备的迷走神经刺激 (iVNS) 于 1997 年首次获得 FDA 批准用于治疗癫痫,后来用于治疗抑郁症,但它存在一些安全问题,这为经皮迷走神经刺激 (tVNS) 的发展铺平了道路,经皮迷走神经刺激可通过耳朵 (耳廓) 或颈部 (颈部) 的位置应用 ( Butt 等人,2020 年)。Vargas-Caballero 等人在他们的小型评论中。讨论了 tVNS 成为治疗阿尔茨海默病 (AD) 早期认知症状的可靠疗法的理由。在不同的可能作用机制中,作者将注意力集中在激活蓝斑 (LC) 上,这会导致海马和新皮质释放儿茶酚胺,随后增强突触可塑性并减少炎症信号。事实上,介导注意力、记忆力和