大型语言模型(LLMS)是非常大的深度学习模型,可根据大量数据进行重新训练。是句子的双向编码器表示,来自变形金刚(SBERT)的句子是基于变压器的DeNoising AutoCoder(TSDAE),生成查询网络(GENQ)和生成假伪标记(GPL)的改编。本论文项目旨在为瑞典法律判断开发语义搜索工具,以克服法律文件检索中传统关键字搜索的局限性。为此,使用高级培训方法(例如TSDAE,GENQ和GPL的改编),通过利用自然语言处理(NLP)(NLP)(NLP)(NLP)和精细的LLM来开发一种善于理解法律语言的语义细微差别的模型。要从未标记的数据中生成标记的数据,对其进行微调后使用了GPT3.5模型。使用生成模型的使用标记数据的生成对于该项目有效训练Sbert至关重要。已经评估了搜索工具。评估表明,搜索工具可以根据语义查询准确检索相关文档,并同样提高法律研究的效率和准确性。genq已被证明是此用例的最有效的训练方法。
摘要:光系统Ⅱ是叶绿体的重要组成部分,其修复过程对缓解光抑制至关重要,对提高植物的抗逆性和光合效率具有重要意义。致死基因被广泛应用于基因编辑的效率检测和方法改进。本研究在油菜中发现了一个自然发生的致死突变体7-521Y,该突变体子叶黄化,受双隐性基因cyd1和cyd2控制。通过全基因组重测序和图位克隆相结合的方法,利用15 167个黄化个体将CYD1精细定位到29 kb的基因组区域上。通过对转基因进行共遗传分析和功能验证,确定BnaC06.FtsH1为目的基因;它编码一个丝状温度敏感蛋白H 1 (FtsH1)水解酶,能够降解拟南芥中受损的PSII D1。BnaC06.FtsH1在甘蓝型油菜的子叶、叶片和花中表达量较高,且定位于叶绿体中。此外,在7-521Y中,FtsH上游调控基因EngA的表达上调,D1的表达下调。FtsH1和FtsH5的双突变体在甘蓝型油菜中是致死的。通过系统发育分析发现,在芸苔属植物中FtsH5的丢失,剩下的FtsH1是PSII修复周期所必需的。CYD2可能是甘蓝型油菜A07染色体上FtsH1的同源基因。我们的研究为致死突变体提供了新的见解,其发现可能有助于提高油菜 PSII 修复周期的效率和生物量积累。
已研究了将Barite-fuorspar矿物废物(BFMW)纳入一种细节添加剂,因为它对水泥砂浆的机械和屏蔽性能的影响。制备了几种砂浆混合物,以不同比例的BFMW为0%至30%,作为细胞骨料替代。水泥砂浆混合物的密度,压缩和拉伸强度以及伽马射线辐射屏蔽。结果表明,包含25%BFMW的砂浆混合物达到最高的抗压强度值,超过50 MPa。通过实验测试和使用Microshield软件包计算的计算测量伽马射线衰减的评估,结果表明,使用BFMW聚集体可将衰减系数增加约20%。这些发现表明,矿物废物可以适当用作部分替换骨料,以改善辐射屏蔽以及降低砂浆和混凝土成本。2016 Elsevier Ltd.保留所有权利。
我们中很少有人关注历史上有多少发明随着时间的推移影响了我们的身体和大脑的发展。杜克大学神经工程中心的 M. Nicolelis 博士告诉我们,“每当我们使用某种工具与环境互动时,例如电脑鼠标、汽车、眼镜(……和字母表),我们的大脑就会将工具的属性同化到神经元空间。工具是融入我们身体图式的附属物。随着我们开发新工具,我们会重塑我们的大脑。- Miguel Nicolelis 博士,纽约时报,2003 年 10 月 13 日。受思想的推动……我们的大脑很可能正在改变其对我们身体的内部形象,将这些工具作为我们自身的延伸,”Nicolelis 说道 http://www.eurekalert.org/pub_releases/2013-08/dumc-tam082313.php
发育迟缓是全球一个营养问题,尤其是在过去十年中影响儿童。它对儿童健康的影响至关重要且深远,从而在短期和长期内都产生了显着的负面影响。阻碍的一些确定后果包括儿童的认知和运动发育受损。在认知效应的遗传中已广泛进行,但有关其对精细运动发育的影响的信息相对较少。因此,这旨在研究阻碍儿童精细运动发育的影响。这项研究采用了与该主题相关的文献综述方法和文章,涵盖了2018年至2023年的时期。Prisma方法用于分析文献研究。结果:在总共233篇文章中,有19篇文章进行了彻底审查,最终仅分析了8篇文章。所有审查的文章的结果表明,发育迟缓与精细运动发育的下降有关。发育迟缓与儿童良好运动发育的减少有关。
此预印本版的版权持有人于2024年1月21日发布。 https://doi.org/10.1101/2022.12.12.31.22284080 doi:medrxiv preprint
扩散张量成像(DTI)是磁共振成像(MRI)的高级方式,它扩展了扩散加权成像(DWI)的能力。DWI测量水扩散信号,DTI利用来自多个扩散方向的数据来绘制大脑中水分子的三维扩散,从而使其微观结构组织的评估。源自DTI的密钥指标包括分数各向异性(FA),它反映了白质微结构的完整性;平均扩散率(MD),这表明了总水扩散的大小,并且与细胞密度和细胞外空间有关。和径向扩散率(RD),代表垂直于轴突纤维的扩散,与髓磷脂状况相关[1]。dTI已应用于神经康复领域,研究报告了基于白质分析[2-4],其效用在预测中风和创伤性脑损伤后的运动和功能恢复方面。此外,DTI已用于调查神经退行性疾病的白质变化[5-7],并提供了一种定量方法来评估细微的微结构变化,而常规MRI很难检测到这些变化[8,9]。
运动技能,尤其是笔迹等精细的运动技能,在学术追求和日常生活中起着至关重要的作用。传统的教授这些技能的方法,尽管有效,但可能会耗时且不一致。随着机器人技术和人工智能等广告技术的兴起,对自动化此类教学过程的兴趣越来越多。在这项研究中,我们研究了一位虚拟AI老师在模拟人工教育技术中进行运动技能的技术的潜力。我们介绍了一个AI教师模型,该模型捕获了人类构造的独特特征。使用辅助学习环境对模仿教师学习者的互动,我们测试了AI模型针对四个指导假设进行了测试,强调了能够证明的学习者表现,提高了技能掌握率,并降低了学习成果的变异性。我们的发现,在合成学习者上得到验证,揭示了所有测试过的假设的重大证明。值得注意的是,我们的模型在不同的学习者和设置中展示了鲁棒性,并展示了对笔迹的适应性。这项研究强调了将模仿和巩固学习模型与机器人技术相结合的潜力,以彻底改变关键运动技能的教学。
晶粒尺寸是确定性的微观结构特征,可以使六角形封闭式(HCP)金属中变形的作用。尽管变形孪生是改善结构合金强度 - 降解性权衡的最有效机制之一,但随着晶粒尺寸的减少,其激活降低。这项工作报告了通过引入延性延展性的以身体为中心的立方体(BCC)纳米层接口的细粒度HCP微结构中变形孪生激活的发现。利用基于激光的添加剂制造的快速凝固和冷却条件,以获得精细的微观结构,并与强化的内在热处理结合使用,允许生成BCC纳米层。原位高能同步加速器X射线衍射允许实时跟踪机械孪生的激活和演变。获得的发现显示了延性纳米层的潜力,用于具有改善寿命跨度的HCP损伤耐受材料的新设计。
本研究试图根据原始的改进二维剪切变形理论,阐明简支 FG 型性能梯度材料梁的静态行为分析。杨氏模量被认为是根据组成材料体积分数的幂律分布逐渐连续变化的。应用虚功原理得到平衡方程。因此,利用这里开发的分析模型和 Navier 的求解技术,对简支夹层梁的情况求解控制平衡方程。此外,利用数值结果计算无量纲应力和位移,并与其他理论得到的结果进行比较。提出了两项研究,比较研究和参数研究,其目的一是展示所用理论的准确性和效率,二是分析不同类型梁在不同参数影响下的力学行为。即边界条件、材料指数、厚度比和梁类型。