k -1。六角硼硝化硼(H-BN)木制的含量是有望用于下一代电子热管理的热导电材料。这些电绝缘但热导导的H-BN平流可以作为热填料掺入,以将高𝜿赋予聚合物基于聚合物的复合材料。嵌入了几层H-BN(FLH-BN)植物的基于纤维素的复合材料,实现了使用成本效率和可伸缩程序制备的A liby21.7 W m-1 K-1。该值比在嵌入了大量H-BN的复合材料中观察到的值高5倍(BH-BN,𝜿≈4.5w m-1 k-1),表明在H-BN聚合物组合的H 𝜿 𝜿上,FLH-BN的上i上i上的益处。当用作热界面材料(TIM)的糊剂时,与在同一H-BN负载下的BH-BN综合材料相比,在功率密度(H)下,以2.48 W CM-2的功率密度(H)将最高温度(T MAX)降低24.5°C。结果提供了一种有效的方法,可以改善TIMS的基于纤维素的热糊剂的𝜿,并证明了它们在集成电路(ICS)和高功率电子设备中的热量耗散的生存能力。
基因治疗是一种有前途的治疗策略,旨在用健康的基因修复或替代有缺陷的基因,以预防和治疗遗传疾病。有7000种影响全球超过3.5亿儿童的遗传疾病,而这些疾病中只有5%可以接受治疗。[1]。突破性事件在1990年代首次成功的临床试验和2012年Glybera的批准标志着[2]。基因疗法在治疗各种疾病,从肌肉营养不良和神经系统疾病到血液疾病和罕见遗传疾病方面显示出希望。通过传递故障基因的功能副本,这种方法具有治疗以前无法保育的条件的潜力[3]。近年来,通过成功的临床试验,精制媒介技术和其他复杂的输送系统,基因治疗已取得了迅速的进步。这表明基因疗法可以彻底改变医学。但是,基因治疗仍然面临着诸如高成本,监管障碍,道德问题,长期疗效和安全性等挑战[4]。本综述概述了基因疗法的最新进展,重点是批准的药物及其临床应用。该评论涵盖了各个医学领域的认可基因疗法的范围,包括罕见的遗传疾病,肿瘤学和遗传疾病。通过检查这些批准的疗法,我们旨在强调将基因疗法研究转化为临床实践的切实进步。
这是作者以最终编辑形式发表的文章的手稿,该文章为:Sabrah,A。H. A.,Yassen,G。H.,Liu,W.-C.,Goebel,W。S.A.(2015)。稀释的三重和双抗生素糊的作用对牙髓干细胞和确定的肠球菌生物膜的影响。临床口腔研究,19(8),2059–2066。http://doi.org/10.1007/s00784-015-1423-6
1 tES 设备和提供剂量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................................................................................................................................................................................................................................... 8 2.2 自粘式一体化电极....................................................................................................................................................................................................... 8 2.3 高清(HD)电极....................................................................................................................................................................................................... 8 2.3 高清电极....................................................................................................................................................................................................................... 8 2.4 高清电极....................................................................................................................................................................................................................... 8 . . . . . . 9 2.4 手持导体上的游离电解液. . . . . . . . . . . . . . . 11 2.5 导电橡胶电极上的游离糊剂. . . . . . . . . . . . . . . . 11 2.6 干电极. . . . . . . . . . . . . . . ....................................................................................................................................................................................................................................... 11 2.7 预盐化电极............................................................................................................................................................................................................................................................................................................................. 11 3 电极电阻............................................................................................................................................................................................................................................................................................................................................. 11 3 电极电阻.................................................................................................................................................................................................................................................................................................................... 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... .................................................................................................................................................................................19 9 讨论:争议和未来方向....................................................................................................................................................................................................................................................................20 参考文献....................................................................................................................................................................................................................................................................... ... .... .... .... 21
基于可用的GAAS,GAN或SIC半导体,对高功率电子设备的需求不断增长,能够在超过200°C的温度下连续运行[1-3]。这需要芯片到基底组装技术的必要变化以及对替代组装基板的研究。在如此高的连续操作温度下,不能使用SAC焊料和层压板底物。SAC焊料连续操作的限制是在150°C左右的温度,而不是最佳导热率:低于50 W/MK。在底物方面,正在研究带有Cu,Ag,Au或Ni安装金属化的陶瓷底物。这些要求在过去十年[4-7]中对其他组装技术(例如基于Ag糊的烧结或滑动(固体液体互化)技术)的兴趣日益增长[4-7]。基于糊状的烧结技术正在变得重要。通过正确调整温度和烧结时间以及接触压力,具有非常好的粘附,导热率和可靠性的接触压力。经典的烧结过程可以在200°C至300°C的温度下进行,范围从10 MPa到40 MPa。键合过程的参数取决于糊剂中Ag粉末粒的大小和形状,添加剂以防止结块和使用的溶剂[8]。
摘要:激光诱导正向转移 (LIFT) 技术已用于打印具有微米级颗粒 (1-4 µ m) 的高粘度 (250 Pa · s) 商用银浆。使用单个 ps 激光脉冲转移的体积像素 (体素) 相互重叠以获得连续的金属线。然而,连续体素之间的干扰问题是获得具有良好形貌的线条之前必须解决的主要问题。讨论了激光脉冲能量、供体糊剂膜厚度和连续体素之间距离对单个体素和线条形貌的影响。由于糊剂的粘度高,打印事件后供体膜中的空隙仍然存在,并且它对下一个激光脉冲的物理传输机制产生负面影响。当两个激光脉冲在短距离发射时,根本不会发生传输。只有当脉冲之间的距离足够长以避免干扰,但又足够短以允许重叠(≈ 100 µ m)时,才有可能在单个步骤中打印连续的线条。最后,所获得的知识使得银线的打印速度达到高速(高达 60 m / s)。