图2 PTM研究中的关键范例。在所有面板中(以及本文中的其他数字),用浅红色显示了修改,绿色的蛋白质底物,蓝色的作者,黄色的橡皮擦和紫罗兰的读者。(a)通过蛋白质磷酸化调节酶糖原磷酸化酶的糖原降解活性。该酶的磷酸化和去磷酸化最终受激素胰高血糖素和胰岛素调节,通过用虚线箭头示意性地指示的信号通路。(b)蛋白质泛素化作为26S蛋白酶体降解的信号。泛素化反应是由由E1,E2和E3蛋白组成的酶促级联反应,需要ATP。底物上的Degron基序通过与E3连接酶进行物理相互作用来促进泛素化。poly(ubiquityl)atted底物通过26S蛋白酶体内的受体蛋白识别,展开和降解。(c)通过组蛋白代码调节染色质结构和基因表达。组蛋白尾部的蛋白质修饰是由作者酶安装的,由橡皮擦酶除去,并被读取器蛋白识别。(d)基于面板C的PTMS调节蛋白质的一般方案。(E)从单个蛋白质编码基因产生多种蛋白质成型的变异来源。单个基因可以剪接以产生多种同工型,可以通过差异PTM模式进一步多样化。该图中省略的蛋白质成型多样性的其他来源包括,例如,单核苷酸多态性和替代翻译起始位点。ac,乙酰化;我,甲基化; P,磷酸化; UB,泛素。
范围,变异和影响阴道pH的因素,生殖年龄妇女的正常阴道pH通常在4.0至4.5之间。值得注意的是,绝经前或绝经后妇女的pH值可能略高于4.5 [8]。维持平衡的阴道pH是至关重要的,受诸如嗜酸乳杆菌的代谢活性,其他原住民微生物菌群,雌激素水平,糖原以及菌群和病原体的存在。这种pH平衡对于阴道健康至关重要[9]。在月经期间,通过阴道驱除了大量月经血液,在那里可以被卫生棉条或垫子吸收,与阴道环境接触。在此期间,阴道的pH值可能会增加,因为月经血液通常具有稍微碱性的性质。此外,荷尔蒙相关的月经周期不规则可能会导致阴道粘膜的改变。这些变化可能会影响阴道内的微生物生态系统,从而增加了阴道炎的风险。对于经历常规月经周期的女性,阴道pH通常属于3.8至5.0 [10]。的研究表明,精子充当了一种重要的碱化剂,在库室后几个小时迅速中和阴道酸度(将pH提高到6-7以上),这对于精子穿越雌性生殖小道的能力至关重要。精子在几秒钟内有效地降低了阴道酸度[11]。因此,使用这些避孕药的妇女特别容易受到阴道生态系统的改变[12]。此外,含有非常低或没有乙基雌二醇的避孕剂会导致相对低雌激素血症,从而阻碍人体产生糖原和乳酸的能力。
泼尼松龙是一种合成的肾上腺皮质类固醇药物,主要具有糖皮质激素特性。其中一些特性可重现内源性糖皮质激素的生理作用,但其他特性不一定反映肾上腺激素的正常功能;只有在服用大量治疗剂量的药物后才会出现。泼尼松龙的药理作用源于其糖皮质激素特性,包括:促进糖异生;增加肝脏中糖原的沉积;抑制葡萄糖的利用;抗胰岛素活性;增加蛋白质的分解代谢;增加脂肪分解;刺激脂肪合成和储存;增加肾小球滤过率,从而增加尿酸的排泄量(肌酐排泄量保持不变);增加钙排泄量。
引言2 DM是人类面临的最常见的健康问题之一,约占全球糖尿病诊断的98%,尽管这一比例在国家之间有很大差异[1]。糖尿病估计会影响全球5.37亿成年人,在20至79岁的成年人中,全球患病率为10.5%[2]。 肝脏通过从血液中提取葡萄糖作为燃料并将其作为糖原储存,并从非碳水化合物来源中合成葡萄糖,从而在葡萄糖稳态中起关键作用。 尽管在调节血糖水平方面具有至关重要的作用,但医生对临床检查中肝功能的评估并不经常。 研究表明,T2DM的个体在肝功能测试中的异常发生率高于没有DM的人[3,4]。 这些研究表明,肝酶水平升高表明胰岛素敏感性降低,胰岛素抵抗增加以及2型DM的发展[5,6]。糖尿病估计会影响全球5.37亿成年人,在20至79岁的成年人中,全球患病率为10.5%[2]。肝脏通过从血液中提取葡萄糖作为燃料并将其作为糖原储存,并从非碳水化合物来源中合成葡萄糖,从而在葡萄糖稳态中起关键作用。尽管在调节血糖水平方面具有至关重要的作用,但医生对临床检查中肝功能的评估并不经常。研究表明,T2DM的个体在肝功能测试中的异常发生率高于没有DM的人[3,4]。这些研究表明,肝酶水平升高表明胰岛素敏感性降低,胰岛素抵抗增加以及2型DM的发展[5,6]。
胎盘是一种专门的器官,可支持胎儿的正常发展和生长。胎盘负责向胎儿输送营养和氧气。此外,胎盘会产生激素,可在整个怀孕期间调节母体生理,并对母体免疫系统产生障碍[1]。大鼠胎盘由迷路区,一个结区和母体deciDua组成。迷宫区是胎盘的胎儿部分。此外,迷宫区是母体和胎儿循环之间发现的营养和气体交换的位置。连接区是另一个胎盘部分,具有三个不同的细胞:海绵素细胞,糖原细胞和巨细胞[2]。海绵细胞和巨细胞具有内分泌功能,并产生
糖尿病被认为是危险因素,这主要是由于它在脂质代谢中引起的重大改变。糖尿病是由于缺乏胰岛素分泌或减少组织对胰岛素的组织感应性而引起的碳水化合物,脂肪和蛋白质的代谢受损的同型。该疾病的一个特征方面是胰岛素的有缺陷或不足的分泌反应,这表现在碳水化合物(葡萄糖)的不当利用中,因此高血糖。糖尿病之所以发生,是因为胰腺无法产生足够的激素胰岛素来满足人体的需求,或者由于这种激素无法正常工作(胰岛素抵抗)。 如果单个UAL在细胞中没有葡萄糖,则身体将从另一个来源(脂质)获得能量。 葡萄糖是胰腺从Langerhans胰岛的β细胞中释放胰岛素的主要信号。 细胞具有胰岛素受体,胰岛素与受体和mobi lizes葡萄糖转运蛋白(GLUT)结合,在脂肪组织中,它具有GLUT 4,在胰腺中,它具有GLUT 2。。 Gluts进入细胞表面并在细胞内传输葡萄糖。 大多数葡萄糖都进入糖裂解途径,其中大多数被转化为糖原(葡萄糖糖尿病之所以发生,是因为胰腺无法产生足够的激素胰岛素来满足人体的需求,或者由于这种激素无法正常工作(胰岛素抵抗)。如果单个UAL在细胞中没有葡萄糖,则身体将从另一个来源(脂质)获得能量。葡萄糖是胰腺从Langerhans胰岛的β细胞中释放胰岛素的主要信号。细胞具有胰岛素受体,胰岛素与受体和mobi lizes葡萄糖转运蛋白(GLUT)结合,在脂肪组织中,它具有GLUT 4,在胰腺中,它具有GLUT 2。Gluts进入细胞表面并在细胞内传输葡萄糖。大多数葡萄糖都进入糖裂解途径,其中大多数被转化为糖原(葡萄糖
分子氧(O 2)是一种通用电子受体,最终在所有后生动物的线粒体呼吸链中合成为ATP。因此,缺氧生物学已成为细胞进化,代谢和病理学的组织原理。缺氧诱导因子(HIF)介导肿瘤细胞,以产生一系列葡萄糖代谢适应,包括调节葡萄糖分解代谢,糖原代谢和葡萄糖对低氧的生物氧化。由于HIF可以调节癌细胞的能量代谢并促进癌细胞的存活,因此靶向HIF或HIF介导的代谢酶可能成为癌症的潜在治疗方法之一。在这篇综述中,我们总结了可以诱导肿瘤中低氧葡萄糖代谢的细胞重编程的既定且最近发现的自主分子机制,并探索了靶向治疗的机会。
结果:将绿原酸,苯甲德氏菌,镁质乳核,jateorhizine,palmatine,berberine和axtracydin鉴定为SMW-BI。治疗8周后,SMW和SMW-BI降低了空腹血糖(FBG),总胆固醇(TC),三酰基甘油(TG)和低密度脂蛋白胆固醇(LDL-C)的水平老鼠。此外,SMW和SMW-BI改善了T2DM小鼠的肝细胞形态,减少了脂肪细胞的数量,并增加了肝糖原。网络药理学分析表明,SMW和SMW-BI可能通过调节胰岛素受体底物1(IRS1)/RAC-BETA丝氨酸/苏氨酸蛋白激酶(AKT2)/叉头盒蛋白O1(FOXO1)/Glucose Transporter Typerporter 2(Glut2)信号(Glut2)信号来发挥降血糖。此外,相关分析表明SMW和SMW-BI是关联的