靶标和结合渗透性降低,(iv)突变(7)。通过氨基糖苷修饰酶(AMES)对抗生素失活是对氨基糖苷耐药性的主要机制(8,9)。 AME由几个基因在细菌物种之间水平转移,从而产生其他细菌耐药机制(10)。 对氨基糖苷的抗性主要由五类AME介导,如下所示:Aminoglycoside-6'-N-N-乙酰基转移酶/2'' - O- o-磷酸溶质转移酶[AAC(6'')/APH(2'')]由AAC(6')/APH(6')/APH(2')/aph(2'')Gene; Aminoglycoside-3'-o-磷酸磷酸化酶III [APH(3')-III]由APH(3')-IIIA基因编码;氨基糖苷-4'-o-磷酸磷酸化酶i [ant(4') - i]由ant(4') - ia基因编码;由ANT(9) - I基因编码的氨基糖苷-9-O核苷酸转移酶I [ANT(9)-i]和ANT(6) - I Gene编码的ANT(9) - I基因和氨基糖苷-6-O-Nucleotidyltransferase I [ANT(6)-I]。 在葡萄球菌中,蚂蚁(4') - i,aac(6')/aph(2'')和aph(3')-III分别是影响毒霉素,庆大霉素和卡纳米霉素的最常见的AME(11)。 双功能AME AAC(6') / aph(2英寸)赋予对除链霉素以外的几乎所有氨基糖苷的抗性(12)。< / div> The aac(6')-Ie/aph(2")-Ia (also named aacA - aphD ) gene has been located on the plasmids, transposons such as Tn 4001 (in S. aureus ), Tn 5281 (in enterococci), and Tn 4031 (in S. epidermidis ) and the other mobile genetic elements, increasing the aminoglycoside resistance and the对其他化合物的抗性(13) 在欧洲,亚洲和南美国家中报道了高级庆大霉素耐药性(HLGR)的增加。 材料和方法通过氨基糖苷修饰酶(AMES)对抗生素失活是对氨基糖苷耐药性的主要机制(8,9)。AME由几个基因在细菌物种之间水平转移,从而产生其他细菌耐药机制(10)。对氨基糖苷的抗性主要由五类AME介导,如下所示:Aminoglycoside-6'-N-N-乙酰基转移酶/2'' - O- o-磷酸溶质转移酶[AAC(6'')/APH(2'')]由AAC(6')/APH(6')/APH(2')/aph(2'')Gene; Aminoglycoside-3'-o-磷酸磷酸化酶III [APH(3')-III]由APH(3')-IIIA基因编码;氨基糖苷-4'-o-磷酸磷酸化酶i [ant(4') - i]由ant(4') - ia基因编码;由ANT(9) - I基因编码的氨基糖苷-9-O核苷酸转移酶I [ANT(9)-i]和ANT(6) - I Gene编码的ANT(9) - I基因和氨基糖苷-6-O-Nucleotidyltransferase I [ANT(6)-I]。在葡萄球菌中,蚂蚁(4') - i,aac(6')/aph(2'')和aph(3')-III分别是影响毒霉素,庆大霉素和卡纳米霉素的最常见的AME(11)。双功能AME AAC(6') / aph(2英寸)赋予对除链霉素以外的几乎所有氨基糖苷的抗性(12)。< / div>The aac(6')-Ie/aph(2")-Ia (also named aacA - aphD ) gene has been located on the plasmids, transposons such as Tn 4001 (in S. aureus ), Tn 5281 (in enterococci), and Tn 4031 (in S. epidermidis ) and the other mobile genetic elements, increasing the aminoglycoside resistance and the对其他化合物的抗性(13)在欧洲,亚洲和南美国家中报道了高级庆大霉素耐药性(HLGR)的增加。材料和方法本研究试图确定金黄色葡萄球菌和编码AMES和FEMA的临床分离株中抗生素耐药性的频率,AMES和FEMA是金黄色葡萄球菌在金黄色葡萄球菌中表达甲基甲基蛋白耐药性必不可少的,并且还参与了北极蛋白酶蛋白酶的葡萄球菌细胞Wall的生物合成。
甾体糖苷生物碱 (SGA) 通常存在于茄属植物中,是番茄 (Solanum lycopersicum)、马铃薯 (Solanum tuberosum) 和茄子 (Solanum melongena) 等茄属粮食作物 (Harrison 1990; Helmut 1998; Petersen et al. 1993) 中的已知有毒物质(图 1)。由于 SGA 对真菌、细菌、昆虫和动物具有毒性,因此被认为在抵御多种病原体和捕食者方面发挥着防御作用(Friedman 2002、2006)。土豆是全球第四大重要作物,然而,土豆含有有毒的 SGA,例如 α-茄碱和 α-卡茄碱。 SGA 主要存在于芽菜和绿色马铃薯中(特别是靠近皮的部分),如果马铃薯管理不当(例如暴露在光线下),它们的积累就会增加。虽然少量的 SGA 只会导致难闻的味道,但摄入大量则会引起食物中毒。番茄的绿色组织(例如叶子和未成熟果实)中主要的 SGA 是 α-番茄碱和脱氢番茄碱(Friedman 2002)。然而,在番茄果实成熟过程中,未成熟果实中积累的 α-番茄碱会被代谢并转化为无毒无苦味的 SGA esculeoside A(Iijima 等人 2009)。茄子主要产生 α-茄碱和 α-茄精(Sánchez-Mata 等人 2010)。此外,多种 SGA,例如脱米辛(S. acaule)和瘦素 I 和 II(S.
摘要:酶是许多工业应用必不可少的生物催化剂,但稳定性,选择性和受限的底物识别当前的使用限制。尽管酶工程在克服这些局限性方面的重要性,但通常会受到从天然来源衍生的酶的复杂建筑的挑战。计算方法的最新进展已使具有特定功能位点的简化支架的从头设计。这样的脚手架可能是酶工程平台的有利优势。在这里,我们提出了一种从从GH101酶家族的乙酰基乳糖苷酶活性位点(GH101酶家族的糖苷水解酶)的简化支架的从头设计的策略。使用Trrosetta幻觉,基于深度学习的结构预测的迭代循环以及蛋白质序列设计,我们设计了具有290个氨基酸的蛋白质,同时将分子量纳入了290个氨基酸,同时将分子量减少100 kDa,而不是初始的内膜α-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-乙酰乙酰基质抗乳酸化酶。在11种测试设计中,有6个表示为可溶性单体,与天然酶相比显示出相似或增加的恒温性。尽管缺乏可检测到的酶促活性,但代表性设计的实验确定的晶体结构以1.0Å的根平方偏差密切匹配设计,其催化性最重要的侧链在2.0Å之内。结果突出了脚手架幻觉在设计蛋白质中的潜力,该蛋白可能是后续酶工程的基础。关键字:从头设计,酶设计,糖苷水解酶,深网幻觉■简介
摘要 蜜蜂利用蜂王浆控制的 DNMT3 介导的表观遗传机制产生两种不同的雌性种姓,即长寿的可育蜂王和短命的不育工蜂。幼虫中 DNMT3 的抑制作用模拟了蜂王浆在成年雌蜂中发生的表型变化。蜜蜂基因组中需要解决的一个关键问题是确定蜂王浆中抑制 DNMT3 并从而决定发育命运的表观遗传活性化合物。进行了分子对接、MMGBSA 分析和 MD 模拟,以确定蜂王浆中抑制 DNMT3 的主要候选多酚化合物。十三种多酚化合物与 DNMT3 对接,并使用两个基本指标 XP GScore 和 MMGBSA dG Bind 来评估结合亲和力。观察到的结合亲和力最高的是木犀草素 7-O-葡萄糖苷,对接得分为 −10.3,山奈酚 3-O-葡萄糖苷为 −8.9。此外,这两种化合物的总结合能分别高达 −52.8 和 −64.85 kJ/mol。MD 模拟表明,与山奈酚 3-O-葡萄糖苷不同,木犀草素-7-O-葡萄糖苷在整个模拟期间与 DNMT3 保持一致的相互作用。这些结果表明,在蜂王浆中的 13 种多酚化合物中,木犀草素-7-O-葡萄糖苷是最有希望成为这种饮食中负责大部分 DNMT3 抑制活性的成分的候选者。
突出显示54 55•革兰氏阴性含量的抗氨基甲酸抗性大多是由AAC(6')-IB 56酶57•AAC(6') - IB - IB在大多数革兰氏阴性病原体中都鉴定出IB,大多数革兰氏阴性病原体58•AAC(6'')的抑制剂可用于治疗抗ib(6'') - IB的抑制作用59•IB的抑制作用59•IB的抑制作用59-确定的抑制剂60•可以通过结构活动关系研究来优化铅化合物61 62
This review focuses on the role of reactive oxygen species (ROS) on the develop- ment of type 1 and type 2 diabetes and its treatment with secoisolariciresinol diglucoside (SDG) isolated from flaxseed which is an antioxidant and suppresses phosphoenolpyruvate carboxykinase (PEPCK) gene expression, a rate- limiting enzyme in the gluconeogenesis in肝脏。ROS在1型糖尿病的发展中的作用[糖尿病易生物育种(BBDP)大鼠和链蛋白酶诱导的糖尿病患者(STZ)大鼠和2型糖尿病(Zucker糖尿病脂肪脂肪雌性大鼠,ZDF大鼠)]。通过测量血清和胰腺丙二醛(MDA),胰腺化学发光(胰腺-CL)和白细胞的氧自由基活性(WBC-CL)来评估氧化应激。糖尿病的诊断是通过高血糖和葡萄糖症进行的。SDZ大鼠的糖尿病糖尿病的病情为100%,BBDP大鼠的糖尿病为72%,ZDF大鼠的糖尿病为72天,到72天。 糖尿病的发育与血清和胰腺MDA,WBC-CL和胰腺CL的增加有关,以及糖化的血蛋白(HBA 1 C)。 可持续发展疾病可阻止STZ大鼠的糖尿病患者的发育75%,BBDP大鼠的糖尿病增加了71%,ZDF大鼠的糖尿病在72天时的发生时增加了20%。 然而,在72天大的情况下,有80%的大鼠未患糖尿病,后来又患上了糖尿病,这表明SDG治疗延迟了ZDF大鼠糖尿病的发展。 用可持续发展目标治疗降低了血清和胰腺MDA,WBC-CL和胰腺CL的水平。 含有34%至38%可持续发展目标的木质络合物可有效降低人类2型糖尿病的血清葡萄糖和HBA 1 C。糖尿病的病情为100%,BBDP大鼠的糖尿病为72%,ZDF大鼠的糖尿病为72天,到72天。糖尿病的发育与血清和胰腺MDA,WBC-CL和胰腺CL的增加有关,以及糖化的血蛋白(HBA 1 C)。可持续发展疾病可阻止STZ大鼠的糖尿病患者的发育75%,BBDP大鼠的糖尿病增加了71%,ZDF大鼠的糖尿病在72天时的发生时增加了20%。然而,在72天大的情况下,有80%的大鼠未患糖尿病,后来又患上了糖尿病,这表明SDG治疗延迟了ZDF大鼠糖尿病的发展。用可持续发展目标治疗降低了血清和胰腺MDA,WBC-CL和胰腺CL的水平。木质络合物可有效降低人类2型糖尿病的血清葡萄糖和HBA 1 C。总而言之,1型和2型糖尿病的发育是通过氧化应激介导的,并且具有可持续发展目标的糖尿病的预防或延迟可能是由于其抗氧化活性及其对PEPCK酶的抑制作用。
氨基糖苷类(阿米卡星、庆大霉素和妥布霉素)是用于革兰氏阴性菌感染肠外治疗的高效杀菌抗生素。由于可能出现肾毒性和耳毒性(这些毒性随着使用时间延长而增加),因此通常应限制使用剂量少于 3 剂(持续时间为 72 小时),例如用于尿路脓毒症的经验性治疗。氨基糖苷类与某些细胞壁活性药物(例如青霉素、糖肽)联合使用时,可提供有用的协同杀灭作用,从而提高链球菌或肠球菌性心内膜炎等严重感染的临床治愈率。所有需要使用庆大霉素超过 72 小时的患者都需要传染病 (ID) 输入和 AMS 批准才能接受持续治疗。CHQ 抗菌药物管理网站上列出了庆大霉素和妥布霉素的预批准适应症。阿米卡星是一种受限制的抗菌药物,在开具处方或使用前需要输入身份证明并获得 AMS 批准。为了确保疗效、最大程度降低毒性并限制耐药性的蔓延,必须仔细开具阿米卡星、庆大霉素和妥布霉素治疗处方并进行监测。
骨髓炎(BCO)la行的细菌软骨症是肉鸡中的一种腿部障碍,导致经济损失,食品安全问题和动物福利行业的巨大损失。维生素D 3,1,25-二羟基维生素D 3的活性代谢产物在矿物质稳态,骨骼健康和免疫系统中扮演着关键作用,这对于针对BCO的影响至关重要。因此,我们假设补充1,25-二羟基维生素D 3(1,25(OH)2 D 3-糖苷)的补充是控制la行的有效度量。在这里,我们报告了通过比较0 m g/kg,0.5 m g/kg,1.0 m g/kg,1.0 m g/kg和2.0 m g/kg的最佳浓度1,25(OH)2 3-糖苷补充减少BCO的最佳浓度。1.0 m g/kg的1,25(OH)2 D 3-糖苷的应用降低了53.7%,从0 m g/kg和0.5 m g/kg相互差异(p <0.05),但相似(p> 0.05)至2.0 m g/kg。第二个目的是通过比较整个56 d,第一个28 d的1.0 m g/kg(OH)2 d 3-糖苷的应用,评估1,25(OH)2 3-糖苷的喂养的时间。以1.0 m g/kg为1,25(OH)2 D 3-糖苷的饲养剂,以减轻BCO的发病率53%,与过去28 d的申请有显着差异(p <0.05),但没有明显的差异(p> 0.05)与补充56 d的补充差异(p> 0.05)。因此,第一个28 d中的1.0 m g/kg 1,25(OH)2 D 3-糖苷是最佳的1,25(OH)2 D 3-糖苷给药,并为补充
亲爱的编辑,当前遗传学研究的一个主要挑战是通过正向遗传学方法识别具有罕见或没有遗传变异的基因的功能,例如种质资源中的数量性状基因座定位和关联研究,特别是在多倍体作物中,研究重复基因的功能分化非常困难。在这里,我们报道了一个在硫代葡萄糖苷运输中发生罕见突变的致病基因,并创建了一种低种子硫代葡萄糖苷基因型,用于多倍体油菜的品质和抗性育种,油菜是全球第二大食用油和蛋白粕来源。硫代葡萄糖苷是众所周知的次级代谢产物,在植物防御疾病和昆虫以及人类营养/健康方面具有重要的生物学和经济作用,例如抗癌作用(Sønderby 等,2010)。然而,高种子粕硫代葡萄糖苷会导致甲状腺肿和其他有害影响。因此,20 世纪中叶开始了“双低”(低籽粒硫代葡萄糖苷和低芥酸含量)油菜育种,大大降低了籽粒硫代葡萄糖苷含量,从 0.100 m mol g –1 降低到 5.30 m mol g –1。
抽象的抗生素消耗及其滥用量在历史上并反复指出是抗生素耐药性出现和传播的主要驱动力。然而,有几个例子表明,尽管使用抗生素的使用大量降低,并且其他因素仍处于危险之中,但耐药性可能会持续存在。在这里,我们研究了氨基糖苷耐药性的时间,空间和生态分布模式,通过筛选超过160,000多个公开可用的基因组,用于编码氨基糖苷 - 修饰酶(AME基因)的27个基因簇(AME基因)。我们发现AME基因表现出非常普遍的模式:约25%的测序细菌携带AME基因。这些细菌是从所有大陆(南极)和陆地生物群落中的所有大陆进行测序,属于大量的门。通过关注1997年至2018年之间的欧洲国家,我们表明,氨基糖苷的消费对携带AME-Gene的细菌的流行率几乎没有影响,而在生物群体中观察到大多数患病率的变化。我们进一步分析了跨生物群落的抵抗组成分的相似之处:土壤,野生动植物和人类样品似乎是了解不同生态环境之间AME基因的交流的核心。在一起,这些结果支持这样的观念,即基于减少抗生素使用的介入策略应通过对交换的更强大的控制,尤其是生态系统之间的更强控制。