不可消除的细胞会产生胞质Ca 2+信号,以响应G蛋白偶联受体和生长因子受体的刺激(Berridge等,2003; Clapham,2007)。通常,在没有外部Ca 2+的情况下,可以在短时间内观察到这些Ca 2+信号,这表明胞质Ca 2+浓度([[Ca 2+] Cyt)的潜在增加的主要机制是Ca 2+从内质含量网状(Barak和Parak and Parekh,Parekh,2020)中释放出Ca 2+的释放。Along with mitochondria, the clearance of cytosolic Ca 2+ by the plasma membrane Ca 2+ ATPase (PMCA) and the Na + -Ca 2+ -exchanger (NCX) reduces the amount of Ca 2+ that is available to the sarco/endoplasmic reticulum Ca 2+ ATPase (SERCA) for re fi lling ER Ca 2+ stores after each Ca 2+ spike, and as a结果,Ca 2+信号在无Ca 2+的解决方案中(Barak and Parekh,2020年)后降低。为了产生稳定的高胞质Ca 2+尖峰,因此是必不可少的,细胞外Ca 2+的大孔是必须的,这是由商店经营的Ca 2+进入(SOCE)实现的,之所以称为刺激触发的刺激触发,从而降低ER Ca 2+水平(Putney,2017; Lewis,2017; Lewis,2020 2020)。通常,SOCE生成
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
Nicola Bilotta 曾担任国际事务研究所 (IAI) 高级研究员,领导数字化和全球经济研究。他目前是欧盟监管数字金融学院 (EU-SDFA) 的协调员和佛罗伦萨银行与金融学院 (欧洲大学学院) 的研究员。他还是 LUMSA 大学的兼职教授和 IAI 的副研究员。此前,他曾担任银行家研究团队 (金融时报) 的高级研究分析师、战略与国际研究中心的客座研究员以及 2021 年意大利担任 G20 主席国期间 Think20 工作组“基础设施投资和融资”的协调员。他共同编辑并参与了以下书籍:《科技巨头的崛起》。全球金融和政治的游戏规则改变者(Peter Lang,2019 年)和中央银行数字货币的(近期)未来。全球经济和社会的风险和机遇(Peter Lang,2021 年)。
随着组织努力在以快速变化和颠覆为特征的动态商业环境中取得商业成功,许多组织都寻求投资先进的信息系统 (IS) 和信息技术 (IT),这些系统和技术能够通过明智的决策和更快的行动来提高绩效 (Park 等人2017;Torres 等人2018)。在这些技术中,大数据的出现以及复杂算法和 IT 基础设施的发展导致了人工智能 (AI) 的出现,人工智能可以被认为是模仿人类智能有限方面的机器,是许多当代组织的顶级技术先行者 (Burstr ö m 等人2021;Haenlein 和 Kaplan 2019;Kaplan 和 Haenlein 2019;Mikalef 和 Gupta 2021)。然而,尽管人们热衷于应用人工智能来实现潜在的商业价值,但一些组织在采用这项技术时遇到了挑战,阻碍了他们实现绩效改进(Fountaine 等人2019;Ransbotham 等人2018)。在一项发表在流行商业杂志上的全球高管研究中,多达 70% 的组织报告称,到目前为止,人工智能对业务绩效的影响微乎其微甚至没有影响(Ransbotham 等人2019)。人工智能未能实现商业价值的一个原因是,组织发现将其融入传统商业模式具有挑战性(Burstr ö m 等人2021)。同样,Brynjolfsson 等人。(2019) 认为,公司层面的资源重组是人工智能未能实现价值的最令人信服的原因之一。
摘要:本研究探讨了长链非编码 RNA 核副斑马组装转录本 1 (NEAT1) 变体 1 (NEAT1v1) 对肝癌细胞系耐药性的影响。NEAT1 敲低激活了丝裂原活化蛋白激酶 (MAPK) 信号通路,包括 MAPK 激酶 (MEK)/细胞外信号调节激酶 (ERK),但抑制了 AKT。此外,NEAT1 敲低使肝癌细胞对索拉非尼和仑伐替尼敏感,这两种药物均在临床上用于治疗肝细胞癌,而它却使肝癌细胞对 AKT 靶向药物 capivasertib 产生耐药性。NEAT1v1 过表达抑制了 MEK/ERK 并激活了 AKT,导致对索拉非尼和仑伐替尼产生耐药性并对 capivasertib 产生敏感。超氧化物歧化酶 2 (SOD2) 敲低可逆转 NEAT1v1 过表达对分子靶向药物敏感性的影响。尽管 NEAT1 或 SOD2 敲低增强了内质网 (ER) 应激,同时抑制了 AKT,但 ER 应激抑制剂牛磺脱氧胆酸并未恢复 AKT 活性。虽然还需要进一步的体内和临床研究,但这些结果表明 NEAT1v1 通过 SOD2 将肝癌细胞系的生长模式从 MEK/ERK 依赖模式转变为 AKT 依赖模式,并独立于 ER 应激调节对分子靶向药物的敏感性。
正在研究几个永久性的太阳系体,包括火星和冰冷的月亮。在这样的位置,微生物的寿命必须应对低温和高压和低压,在火星表面上的 * 10 2到10 3 pa,在冰冷月球地下海洋中的 * 10 8 –10 9 pa。细菌肉细菌由以前被证明在低温下和低压或高压下没有氧气的物种组成,但迄今尚未探索该属的整个压力范围。在本研究中,我们在2 c的厌氧条件下,在复杂的液体培养基中进行了14种代表11种的肉网菌株,在2 c和一系列压力下,跨越5个数量级的压力,从10 3
摘要:在临床癌症病例中,使用基于下一代测序的癌症基因小组分析在临床癌症病例中检测到了许多不确定意义(VU)的变体。阐明VUS的一种策略是使用基因组编辑具有靶向基因变异的培养癌细胞系的功能分析。基因组编辑是在培养的癌细胞系中创建所需基因改变的强大工具。然而,基因组编辑的效率在感兴趣的细胞线之间有很大变化。我们进行了比较研究,以确定人胶质母细胞瘤(GBM)细胞系中血小板衍生生长因子受体α(PDGFRA)变体的最佳编辑条件。在监测PDGFRA的拷贝数和PDGFRα蛋白的表达水平后,选择了四个GBM细胞系(U-251 mg,KNS-42,SF126和YKG-1细胞)。要比较这些GBM细胞系中的编辑效率,定期插入的簇的模式是定期间隔短的短腔重复(CRISPR)相关蛋白9(CAS9)递送(质粒与核糖核蛋白(RNP)),转移方法(Lipoffection vs. Electortoration and Electolation),以及有用的,有用。在此,我们证明了用单靶RNA(Cas9 RNP复合物)将CAS9转移的转移可以充分地编辑目标核苷酸取代,而不论细胞分类如何。作为CAS9 RNP复杂方法比CAS9质粒唇彩方法显示出更高的编辑效率,因此在我们的实验条件下,它是人类GBM细胞系中单核苷酸编辑的最佳方法。
摘要。如何客观量化地评价中小学课程质量是一项艰巨的任务。智慧教学是通过网络平台实现在线教学。师生通过智慧课堂,完成教与学,主要体现在教师、学生、媒体三者角色同步实现教与学的场景。本文提出以互联网为主体,以智能信息处理为技术支撑,利用课堂视频评测分析学生在课堂上的行为,利用教师语音识别和语音情感识别分析教学内容和教学方式,结合课程软件和高频词汇,构建中小学智能化综合课程评测系统,实现教师端和学生端的同步课堂,使人工智能技术得到有效利用。
摘要背景:HAP1 是一种近单倍体人类白血病癌细胞系,常与 CRISPR-Cas9 基因编辑技术结合用于基因筛选。HAP1 携带费城染色体 (Ph) 和插入 19 号染色体的额外的约 30 Mb 的 15 号染色体片段。体外细胞系作为生物医学研究模型系统的潜在用途取决于其维持基因组稳定性的能力。作为一种具有近单倍体基因组的癌细胞系,HAP1 容易出现遗传不稳定性,而其在培养中自发二倍化的倾向进一步加剧了这一问题。此外,CRISPR-Cas9 基因编辑加上长时间的体外细胞培养可能会诱发意外的“脱靶”细胞遗传学突变。为了深入了解染色体不稳定性 (CIN) 和核型异质性,使用多重荧光原位杂交 (M-FISH) 在单细胞分辨率下对 19 个 HAP1 细胞系进行了细胞遗传学表征,其中 17 个为近单倍体,两个为双单倍体。我们重点研究了新的数值 (N) 和结构 (S) CIN,并讨论了观察到的不稳定性的潜在致病因素。对于每个细胞系,我们检查了其倍性、基因编辑状态和体外细胞培养时间。结果:19 个细胞系中有 16 个已经过基因编辑,传代次数从 10 到 35 不等。17 个近单倍体细胞系的二倍体化范围为 4% 到 35%,[1n] 和 [2n] 中期的 N- 和 S-CIN 百分比范围为 7% 到 50%,两个细胞系没有显示 CIN。两种双单倍体细胞系中患有 CIN 的细胞百分比分别为 96% 和 100%。观察到的最常见的 S-CIN 是缺失,随后是非相互易位和罗伯逊易位。有趣的是,我们观察到近单倍体和双单倍体细胞系中都普遍存在与 13 号染色体相关的 S-CIN,且涉及 13 号染色体的罗伯逊易位发生率很高。此外,基因座特异性 BAC(细菌人工染色体)FISH 使我们首次能够显示额外的 15 号染色体片段插入到 HAP1 基因组 19 号染色体的 p 臂而不是 q 臂中。结论:我们的研究揭示了 CIN 的高发生率,导致大多数 HAP1 细胞系的核型异质性,并且细胞系之间的染色体畸变数量有所不同。值得注意的观察是与 13 号染色体相关的结构染色体畸变频率很高。我们表明,CRISPR-Cas9 基因编辑技术与自发二倍体化和长期体外细胞培养相结合,可能有助于在现有 CIN 的 HAP1 细胞系中诱导进一步的染色体重排。
