摘要 —由于各种模块化电力电子转换器的可扩展性和灵活性,集成分体式储能组件(如电池和超级电容器)是可行且有吸引力的。本文研究了在交流-直流转换应用中使用储能集成模块化转换器的不同交流/直流故障恢复方案的运行和经济特性。基于储能系统 (ESS) 和交流和/或直流系统之间的拓扑特征,提出了四种基于储能的模块化转换器部署方案。通过案例研究,使用时域仿真验证了极端交流/直流故障条件下的运行性能,包括故障隔离和功率补偿。评估了系统损耗,并阐述了详细的设计考虑因素、主要组件使用情况和估计的资本成本。对这四种方案进行了比较并提出了选择指南。一般来说,对于这种交流-直流转换应用,具有独立 ESS 的方案由于其高度的运行灵活性而更可取。
摘要:鉴于可再生能源在配电系统中的重要性,本文讨论了定位和确定这些能源(即风力涡轮机和太阳能电池板)容量的问题。为了解决这个优化问题,使用了一种基于salp行为的新算法。目标函数包括减少损耗、改善电压曲线和降低可再生能源成本。在该方法中,考虑了配电系统中不同负载模型和使用智能电表的不同负载水平的可再生资源分配。由于这些目标函数是多目标的,因此使用模糊决策方法从一组帕累托解中选择最优解。所考虑的目标函数可减少损耗、改善电压曲线和降低 RES 成本(A 在不受资源限制的情况下最佳地分配 RES 资源;B:在受资源限制的情况下最佳地分配 RES 资源)。此外,还考虑了每日风、太阳辐射和温度数据。所提出的方法应用于 IEEE 标准 33 总线系统。仿真结果表明,多目标群体算法(MSSA)在改善电压分布和降低配电系统损耗方面具有更好的性能。最后,将 MSSA 算法的优化结果与 PSO 和 GA 算法进行了比较。
I. 引言 A. 世界银行(WB,世行)团队 1 于 2024 年 10 月 1 日至 11 日对肯尼亚绿色和弹性能源扩展(GREEN)多阶段计划方法(MPA)计划第一和第二阶段进行了实施支持任务。对于 GREEN 第一阶段(P176698),任务组跟进了实施进展,包括 (i) 根据支付挂钩指标(DLI)取得的成果以及针对落后于目标的支付挂钩结果(DLR)的补救措施;(ii) 对已实现的 DLR 进行独立验证的进展、流程和时间表;(iii) 2025 财年的支付预测;(iv) 从国家国库(NT)汇出第一笔支付余额的时间表;以及 (v) 计划行动计划(PAP)的实施。对于 GREEN 第二阶段 (P180465),考察团跟进了融资协议生效的剩余条件:总检察长和执行机构的法律意见以及系统稳定设备 (STATCOM) 和 Kimuka 变电站的采购。考察团还讨论了及时分配预算以支付第一阶段和第二阶段款项的重要性。此外,考察团还讨论了能源和石油部 (MoEP)、肯尼亚电力传输有限公司 (KETRACO)、肯尼亚发电公司 PLC (KenGen) 和肯尼亚电力和照明公司 PLC (KPLC) 将实施的技术援助活动,总额近 2000 万美元。考察团在考察期间,世行考察团还分享了正在进行的当前和未来分析研究的最新进展,包括冷却、最后一英里资产、系统损耗减少、电池储能系统和输电公私合作伙伴关系 (PPP)。
1. 背景 孟加拉国政府(GoB)从上一届政府开始就将电力行业列为优先事项。孟加拉国政府已制定了发电、输电和配电的短期、中期和长期计划和项目。随着战略规划和有利政策及法律框架的颁布,目前,该国的装机发电能力已增至 25,730 兆瓦,包括自备能源和可再生能源。人均发电量增加到 608 千瓦时(2021-22 财年)。配电线也增加到 6,19,000 公里,消费者数量增加到 4360 万。整体系统损耗从 2008-09 财年的 18.43% 降至 2021-22 财年的 10.41%。孟加拉国政府通过电力部门实现了 100% 电气化。根据可持续发展目标议程,孟加拉国政府致力于为所有人提供可靠、优质和负担得起的电力。可靠的电网和配电系统是一项挑战。在这方面,将电池储能系统 (BESS) 纳入电网和配电系统可能成为高效输配电系统、能源转型、服务可靠性、高效 VRE 集成、电网支持和碳减排的关键技术。孟加拉国电力部门打算在整个孟加拉国电网和配电网中使用储能技术。此外,它们还可以为能源系统的供应、输配电和需求部分提供基础设施支持服务。从广义上讲,BESS 可以作为运营商在供应和/或需求侧变化的系统中实现高质量和可靠电力流的宝贵工具。这将减少人们对孟加拉国向可变可再生能源渗透增加过渡的担忧。
摘要:气候变化对全球经济稳定构成重大威胁,其主要原因是人类活动产生的温室气体排放。向可再生能源的过渡对于减轻气候风险和实现减排目标至关重要。非洲许多国家都拥有丰富的可再生能源资源,如太阳能、风能和水力发电,但仍然严重依赖化石燃料,能源价格波动导致这些国家面临经济不稳定的风险。国家公用事业公司经常面临财务挑战,原因是成本高、关税低、支付系统效率低、系统损耗高以及基础设施陈旧。这些结构性挑战阻碍了可持续增长所必需的工业发展和经济多样化。对于非洲来说,能源转型为发展支持可持续结构转型的能源系统提供了机会。本文考察了非洲的能源格局,重点研究了可再生能源应对挑战和促进工业化的潜力。它强调了对负担得起的可持续能源的迫切需求,以促进经济转型、提高生产力和培育包括绿色氢在内的绿色产业。它还强调需要制定针对具体情况的战略来克服可再生能源采用的障碍,并充分利用绿色产业的潜力,促进整个非洲大陆的经济多样化和结构转型。关键词:能源转型、可再生能源、绿色工业化、非洲、绿色氢能 JEL 代码:Q42、O13、O55、Q01、Q28
11kV 接入点 技术方面 单位 价值 操作方面 能源 单位 价值 储能系统总安装成本 $/kWh 400 高压配电系统损耗 % 4,00% 储能系统规定循环寿命数 7000 MV / LV 配电 % 3,00% 充电和放电循环效率 % 85% 冬季晚间能源套利价值 c/kWh 246,84 夏季晚间能源套利价值 c/kWh 54,29 资本方面 单位 价值 无损每日套利平均值 c/kWh 102,43 兰特对美元汇率比率 14,4 系统平均每日充电费率 c/KWh 43,72 储能本地成本 R/kWh 5760 克服系统充电损耗的循环成本 c/kWh 8,14 资本贷款利率 %pa 5,5% 轮班带来的循环节省峰值损失 c/kWh 3,07 资本贷款期限 年 10 每日能源套利净平均值 c/kWh 97,36 融资成本 R/kWh -1741 融资电厂总成本 R/kWh 7501 运营方面 网络和需求成本 单位 价值 理论电厂寿命,每周 6 天,每天 1 个周期 年 22,4 峰值持续时间 小时 2 存储电厂预期寿命 年 15 每千瓦时存储的需求减少潜力 kVA 0,5 所需充电/放电周期 数量 4693 每千瓦每月网络费用 r/kVA 7,63 每千瓦每月需求费用 r/kVA 28,99
随着能源消耗的增加和当今可变可再生能源的增加,必须研究不断变化的能源环境中的新可能性。用作储能的电池技术是一个有前途的概念,可用于提高供应质量并避免昂贵的网格扩展。在本文中,检查了电池储能系统(BES)对电网操作的影响。为了调查此事,在挪威Trøndelag的Lierne分配系统中安装了一个1 MW / 1 MWH电池的试验箱进行了六次测试。发现通过管理电池的主动和反应式功率进给,显示了强大的电压稳定。对于反应性功率交换尤其如此,该功率交换显示了各个不同应用程序的多个积极方面,包括减少系统损耗以及减轻快速电池充电的不良E FF ECT。还发现电池系统的积极影响可以很好地渗透到22 kV系统中,在电池6公里以内的电压加强功能降低了不到15%。在整个执行的测试中,BESS被证明是分配网络中电网加强和减少损失的强大工具。根据研究的发现,电池系统显示了大大提高网格供应质量并延长分配基础设施寿命的潜力。此外,这证明可以通过电池充电可忽略的负面影响来实现。凭借独立参与者(例如峰顶塑造者)为辅助市场提供服务的能力,同时应对本地系统挑战,贝丝表现出强大的经济和技术可行性在分配系统运营中。
图 2-9:2022 年净头寸(不含 McNeil)......................................................................................................................... 65 图 2-10:2022 年净头寸......................................................................................................................................... 65 图 2-11:BED 的容量义务和发电资源提供的容量 ......................................................................................... 66 图 2-12:截至 2023 年 6 月的 BED Tier 1 要求和合格资源 ............................................................................. 67 图 2-13:截至 2023 年 6 月的 BED Tier 2 要求和合格资源 ............................................................................. 68 图 2-14:截至 2023 年 6 月的 BED Tier 3 要求和合格资源 ............................................................................. 69 图 2-15:资源比较 ......................................................................................................................................... 98 图 3-1:BED 历史年度峰值/最小负荷 ............................................................................................................. 100 图 3-2:系统损耗 ................................................................................................................................................ 103 图 3-3:变压器负荷报告示例 ...................................................................................................................... 108 图 3-4:伯灵顿历史 SAIFI 值 ...................................................................................................................... 112 图 3-5:伯灵顿历史 CAIDI 值 ...................................................................................................................... 112 图 3-6:伯灵顿历史动物接触停电次数 ...................................................................................................... 116 图 4-1:伯灵顿 1960-2022 年的总能源使用量 ............................................................................................. 131 图 4-2:2015-2022 年能源效率年度 MWh 节省量和第一年能源节省成本 ............................................................................................................. 133 图 4-3:2015-2022 年按主要最终用途划分的能源效率 MWh 节省量 ............................................................................................................. 135 图 4-4:EEU 资源收购预算预测,2024 年至 2043 年 .............................................................................. 135 图 4-5:EEU 年度增量 MWh 节省量实际值和预测值,2012 年至 2043 年 ........................................................ 136 图 4-6:EEU 累计 MWh 节省量预测,经通胀调整,2024 年至 2043 年 ........................................................ 137 图 4-7:预测商业 EEU MWh 节省量(按最终用途),2024 年至 2043 年 ........................................................ 137 图 4-8:预测住宅 EEU MWh 节省量(调整后),2024 年至 2043 年 ........................................................ 138 图 4-9:预测 EEU 第一年节省能源成本(调整后),2024 年至 2043 年 ............................................................. 139 图 4-10:2017 年至 2032 年 Tier III 计划实际活动和预测活动......................................................................................... 140 图 4-11:按计划区域划分的年度 Tier III 激励措施......................................................................................................... 142 图 4-12:2017 年至 2022 年电动汽车 Tier III 激励措施......................................................................................................... 146 图 4-13:预计电动汽车激励措施——低、基准和高情况......................................................................................................... 147 图 4-14:预测的电池供电轻型汽车的 MWh 销售量与总 MWh 销售量的比较............................................................................................................................. 148 图 4-15:家庭电动汽车充电负荷概况与公共/工作场所电动汽车充电负荷概况 ............................................................................................. 149 图 4-16:预计电动汽车累计温室气体减排量部署,2020-2042 年 ...................................................................................................................... 150 图 4-17:电动汽车客户成本测试结果 ...................................................................................................................... 152 图 4-18:电动汽车公用事业成本测试结果 ...................................................................................................................... 153 图 4-19:电动汽车社会成本测试结果 ...................................................................................................................... 154 图 4-20:预计电动公交车兆瓦时销售量,2020-2042 年 ...................................................................................................... 155 图 4-21:GMT 电动公交车充电概况,2022 年 8 月 ...................................................................................................... 156 图 4-22:预计电动公交车部署带来的温室气体减排量 ............................................................................................. 157 图 4-23:电动公交车客户影响测试结果 ................................................................................................................ 158 图 4-24:电动公交车公用事业成本测试结果........................................................................................................... 159 图 4-25:电动公交车社会成本测试结果................................................................................................................... 160 图 4-26:2014 年至 2022 年 BED 自有 EVSE 兆瓦时销量和用户数量......................................................................... 161 图 4-27:2020 年至 2042 年工作场所 EVSE 充电销量......................................................................................... 163 图 4-28:2 级工作场所 EVSE 客户影响测试结果......................................................................................... 164 图 4-29:2 级工作场所 EVSE 公用事业成本测试结果..................................................................................... 165 图 4-30:2 级工作场所 EVSE 社会成本测试结果 ............................................................................................. 165 图 4-31:伯灵顿热泵累计安装量,2017 年至 2022 年 .............................................................................. 166 图 4-32:预计住宅热泵安装数量(累计),2022 年至 2042 年 ...................................................................... 167 图 4-33:预计热泵 MWh 销售量(仅供暖),2022 年至 2042 年 ............................................................................. 168 图 4-34:典型的寒冷气候热泵负荷曲线 ............................................................................................. 169 图 4-35:预计热泵部署带来的累计温室气体减排量,2020 年至 2042 年
变电站电池充电器在确保电动系统中必需电气系统的连续性中起着至关重要的作用。无法维持此供应会导致设备和人员损坏。DC系统包括高压工业/实用工具变电站的最重要组成部分,为保护设备和高压组件提供了能量,从而可以安全地隔离电气故障。通常,变电站电池充电器位于密封或洪水泛滥的细胞库中,在正常操作过程中可提供最小的电流。连续的负载电流在电池上保持恒定电荷,而充电器则在必要时提供额外的电流。失败的充电器或跳闸系统表示需要有效维护和潜在升级。电池充电系统平均最多可以持续8小时,可调节持续时间适合安装或应用要求。选择正确的充电器对于确保电池系统的寿命至关重要。Acrabatt变电站电池充电器系统通过提供可调节,可访问且灵活的解决方案来解决常见的设计问题,例如改造安装和维护复杂性。该系统具有带有数字显示的多功能警报,可轻松编程,并可以使用其他输出模块集成到SCADA或监视系统中。它的19英寸机架设计包括可调高的组件,可移动的侧面板和模块化电缆输入选项,使安装和修改更有效,更具成本效益。它符合ENA标准,其所有零件均经过认证。Acrabatt变电站电池充电器系统是一种可靠,负担得起的解决方案。如果您有兴趣了解有关此系统的更多信息,请与我们联系以获取更多信息。这项技术在电气传输和分销网络中起着至关重要的作用。有关其他应用程序,请参见变电站(主要文章)。变电站是电气发电,传输和分配系统的一部分。它将电压水平从高低转换为低,反之亦然,在两者之间执行各种基本功能。从发电厂到消费者,电能通常以不同电压水平的几个变电站流动。一个典型的变电站包括调节高传输电压和较低分布电压之间的电压水平,或者两个不同的传输电压满足的变压器。它们是我们基础设施的基本组成部分。仅在美国就有大约55,000个变电站。这些设施可能归电气公用事业或大型工业/商业客户所有。通常,它们依赖于远程SCADA的监督和控制,它们会无人看管。术语“变电站”来自一个尚未基于网格的时代。随着中央电站的扩展,较小的一代工厂转化为配电站,从较大的工厂接收能源供应,而不是使用自己的发电机。最初的变电站仅连接到一个发电站,并且本质上是该电站的子公司。Nixon等。Nixon等。可以由承包商或电气实用程序本身设计和建造。最常见的是,该公用事业公司在雇用承包商进行实际建设时处理工程和采购。构建变电站的关键限制包括土地可用性和成本,施工时间限制,运输限制以及需要快速将变电站在线携带。预制通常用于降低建筑成本。变电站可能需要偶尔关闭,但是公用事业公司试图简短地停电。它们对于连接电网或转换电压以确保电力的有效传输和分配至关重要。变电站可以加强电压以进行长距离传输,减少局部分布或将电流从AC转换为DC。即使是最简单的变电站也具有高压开关以进行故障间隙或维护,而较大的变电站可能包括变压器,电压控制设备和复杂的保护设备。一些现代化的变电站遵循IEC 61850等国际标准。分配变电站通常通过降低电压水平将功率从传输系统传输到本地分销网络。这允许电力有效地交付给房屋和企业,而无需直接连接到主要传输网络。相反,他们使用沿街道运行的进料器以中型电压(通常在2.4 kV至33 kV之间)提供电源,具体取决于所服务面积。这些变电站在确保向全球社区的可靠和高效的电力供应方面起着至关重要的作用。分配变电站是电网中电压调节的关键点,尤其是在市中心地区具有高压开关系统复杂变电站的大城市。通常,相应的变电站在低压侧具有开关,一个变压器和最小设施。在诸如风电场或光伏电台之类的分布式生成项目中,收集器变电站用于将电网提高到传输水平。这些变电站还可以提供风电场的功率因数校正,计量和控制。一些例子包括德国的Brauweiler和捷克共和国的Hradec,它们从附近的褐煤燃料植物中收集电力。如果不需要变压器,则变电站是一个开关站,在单个电压级别工作而无需转换电压。切换站用作收集器和分配点,通常用于在故障期间将电流转换为备份线或并行化电路。它们可能被称为切换场,位于电站附近,发电机在院子里提供电力,而传输线则从另一侧的馈线总线拿出电源。变电站的关键功能是切换,连接和断开传输线或往返系统的组件,可以计划或计划外事件。公司旨在在执行维护时保持电力系统的运行,例如添加或删除输电线路或变压器,以确保供应的可靠性。所有工作,从常规测试到构建新变电站,都应使用仍在运行的系统进行。这包括由传输线或其他组件故障引起的计划外的切换事件,例如被雷击或大风吹向塔的线。切换站迅速隔离系统故障,保护设备免受进一步损坏并保持电网中的稳定性。电动铁路还使用定量(通常是分布变电站)进行电流类型的转换,用于直流列车或旋转转换器的整流器,用于与公共网格不同频率的交流电交流。移动变电站的设计定为在公共道路上的旅行,用于自然灾害或战争期间的临时备份。通常,它们的评级低于永久装置,并且由于道路旅行限制,可能会以多个单位建造。变电站设计优先考虑最小化成本,同时确保功率可用性,可靠性和未来变化以及可能的位置,包括室外,室内,地下或组合这些位置。在计划变电站布局时,要考虑环境影响,安全性和扩展潜力等因素至关重要。该站点必须能够适应未来的负载增长或增加传输,并减轻对环境(例如排水,噪声和交通)的影响。理想情况下,变电站应集中位于其分布区域内,以确保有效的电源。安全性也是至关重要的,采取了防止未经授权访问并保护人员和设备免受电气危害的措施。土杆可用于增强较低的电阻接地。要开始设计变电站布局,准备了一个单线图,说明了开关和保护布置,以及传入的供应线和传出输电线路。此图通常具有主元素,例如线条,开关,断路器和变压器,其排列与实际站点布局相似。传入线通常具有断开的开关和断路器,有些情况只有一个或另一个。断开开关通过不中断负载电流提供隔离,而断路器可以防止故障电流,并且当电源以错误的方向流动时可以开/关。大断层电流触发电流变压器绊倒断路器,断开负载并将故障点与系统的其余部分隔离。开关和断路器都可以在变电站内本地操作,也可以从控制中心进行远程操作。使用高架传输线,由于雷电和切换潮可能会导致绝缘故障,因此使用线路入口引导者来保护设备。绝缘协调研究确保设备故障和停电最小。下一阶段涉及公共汽车,将电压线连接到一个或多个总线的母线集。开关,断路器和公共汽车的排列会影响变电站的成本和可靠性。对于关键变电站,环形总线,双总线或“断路器和半”设置,可以用于防止单一断路器故障时电源中断。变电站设计必须平衡缩小足迹与维护易于维护。这允许在维护和维修期间将变电站的一部分脱离。较小的工业变电站由于其最小的负载要求而可能具有有限的开关功能。变电站通常采用安全功能来最大程度地减少工人的电气危害,例如将活导体与裸露的设备分开或使用屏幕保持安全距离。最小清除标准根据管辖权或公司要求而有所不同,更高的电压需要更大的许可。接地垫或网格通常安装在地下0.5-0.6米处,以进行接地,以防止意外重新加强电路。变电站围栏通常至少高2米,保护公众和雇员免受电气危害和故意破坏。变电站包含一系列设备,包括开关,保护,控制设备,变压器和断路器,用于中断短路或过载电流。较小的配电站由于容量降低而可能具有更少的组件。分配电路依赖于居住者断路器或保险丝进行保护。变电站通常不是房屋发电机,但可能具有电容器,电压调节器和反应堆。这些设施可以在围栏,地下或特殊用途的建筑物中找到,其中一些高层建筑物具有多个室内变电站。室内变电站经常在城市地区使用,以最大程度地减少变形金刚中的噪声,增强外观或从极端气候条件或污染中的盾牌开关柜。变电站经常在电气设备之间使用母线作为导体。母线可以是铝制管3-6英寸厚的铝管或电线(应变总线)。室外结构包括木杆,晶格金属塔和管状金属变种,钢晶格塔可为传输线和设备提供低成本的支撑,并在外观不关心的区域。低调变电站可以在外观至关重要的郊区指定。室内变电站可以在高电压下采用气体绝缘变电站(GIS)的形式,或在较低电压下使用金属封闭或金属粘合的开关设备。城市和郊区的室内变电站通常在外面结束,以与周围建筑物融合在一起。紧凑的变电站是内置在金属外壳中的户外设施,其设备相互靠近,以最大程度地减少占地面积的尺寸。高压断路器通常会中断变电站设备中的电流流,从而处理正常,过度,异常或继电器触发的方案。AIS(空气绝缘开关设备)和GIS(气体绝缘开关设备)是当导体分离在断路器中时,用于熄灭功率弧的最常见技术。虽然AIS是最便宜的绝缘子,并且最容易修改,但它占据了更多空间,并将设备暴露于外部环境。但是,它需要在地震活性区域进行额外的支撑,并且比GIS发射更多的电磁场和噪声。GIS仅需要AIS所占的土地面积的10-20%,这可能会节省收购成本。为了优化施工过程,可以在利用其功率的地区安装GIS(气体绝缘变电站),从而可节省大量成本。这种接近允许降低电缆和民用建筑成本。此外,GIS可以替换AIS(空气绝缘开关设备),而无需额外的土地面积,如果电源需求增加。此外,GIS设备通常安装在封闭的建筑物中,可保护其免受污染和盐等环境因素的侵害。在维护成本方面,除非用于切换目的,否则GIS变电站几乎不需要维护,在这种情况下,成本可能相对较低甚至零几年。但是,SF6(硫六氟化物)断路器确实需要加热器在极度冷的温度下正常运行。其他选项包括石油绝缘(OCB)和真空绝缘(VCB)变电站,每个变电站都有自己的利益和缺点。隐居者与断路器相似,但可能会更具成本效益,因为它们不需要单独的保护性继电器。它们通常用于配电系统中,并且随着时间的推移超过一定级别时,可以编程为行程。电容器库用于变电站,以平衡电感载荷的当前抽奖与其反应载荷,有助于减少由于电压下降而导致的系统损耗,或者通过导体启用额外的电力传输。较大的变电站通常具有控制,控制和保护设备的控制室,这些设备通常包括保护性继电器,仪表和断路器。石油变压器已汇合了区域,以防止漏油或火灾。变电站内的控制室配备了通信系统,备份电池和数据记录器,可捕获有关变电站操作的详细信息,尤其是在异常事件中,以帮助后期重建。这些控制室由气候控制,以确保该设备的可靠操作。为了解决间歇性可再生能源(如风能或太阳能)的电力激增,需要其他设备。大多数变压器作为热量和噪声而失去了很大一部分的输入,而不管负载如何,铁损耗是恒定的,而铜和辅助损失与电流平方成正比。为了减少噪音,通常在设备周围建造变压器外壳,以后可以在需要时添加。防火墙围绕变压器建造,以阻止火灾蔓延,并带有用于消防车辆的指定路径。变电站维护涉及使用红外扫描和溶解气体分析等方法来预测维护需求和潜在危险,涉及检查,数据收集和日常计划工作。红外技术检测到表明电能转化为热量的热点,而溶解的气体分析有助于确定何时进行机油隔离的变压器需要过滤或更换油,也检测到其他问题。早期的变电站依赖于手动切换和数据收集,但是随着分销网络变得更加复杂,自动化对于从中心点进行监督和控制所必需。电动变电站是现代电网的关键组成部分,可以有效地传输和向消费者发电。已经使用了各种通信方法,包括专用电线,电源线载体,微波无线电,光纤电缆和有线遥控电路,以及标准化协议(例如DNP3,IEC 61850),以及MODBUS以及MODBUS促进设备和主管中心之间的通信。这些变电站设施通常位于主要电力线附近,并用作长距离传输电源的枢纽。电动变电站的设计和布局可能会取决于位置,负载能力和环境考虑因素等因素。某些变电站是地下或专门设计的结构,以最大程度地减少视觉影响和环境破坏。最近对太平洋西北电站的袭击引起了人们对美国电网脆弱性的担忧。在回应中,专家建议采取积极的措施来保护关键基础设施免受潜在威胁。智能网格的开发也在推动变电站设计中的创新,从而在功率传输和分配方面提高了效率和灵活性。这包括使用高级技术,例如实时监控和控制系统,以及为高性能应用设计的更有效的变电站。专家强调了考虑安全性和安全性的设计变电站的重要性,同时还考虑了环境影响,美学和社区关系等因素。有效的变电站设计需要一种多学科的方法,该方法考虑了技术和非技术考虑。总体而言,电动变电站在维持现代电网的可靠性和效率方面起着至关重要的作用。随着电力需求的不断增长,创新的设计和技术对于确保安全有效地传输电力至关重要。注意:我试图从原始文本中保留主要的想法和概念,同时简化了语言并重组结构,以易于阅读。列出的资料是Blume的书(2016年)和Finn的出版物(2019),都重点介绍了电力系统。的研究,但由于缺少目标信息而导致引用错误。这些参考文献突出了变电站计划和电力系统基础知识中的关键概念,这表明它们与理解主题有关。