增材制造 (AM),通常称为 3D 打印,是一种革命性的制造技术,在航空航天、医疗和汽车领域具有重大的工业意义。金属增材制造可以制造复杂的精密零件并修复大型部件;然而,由于缺乏工艺一致性,认证目前是一个问题。开发并集成了一种多功能、廉价的过程控制系统,减少了熔池波动的变化并提高了组件的微观结构均匀性。残余微观结构变化可以通过热流机制随几何形状的变化来解释。晶粒面积变化减少了高达 94%,成本仅为典型热像仪的一小部分,控制软件由内部编写并公开提供。这降低了过程反馈控制的实施障碍,可以在许多制造过程中实施,从聚合物增材制造到注塑成型再到惰性气体热处理。
工业系统自动化、视觉与控制 (AVCSI) 实验室 阿尔及利亚奥兰科技大学自动化工程系。 ORCID:https://orcid.org/0000-0002-3781-9779 doi:10.15199/48.2023.03.43 使用 3D-TLM 方法和 COMSOL Multiphysics 软件对基于 MEMS 的气体传感器进行微加热器热分析 摘要。带有金属氧化物 (MOx) 的气体传感器为 MEMS 传感器提供了新的机会,因为它们拥塞少、灵敏度高、响应速度快。微热板是这些传感器中控制传感层温度的关键组件。在这项工作中,已经制造并设计了一种蜿蜒的铂基加热器。传输线矩阵 3D-TLM 方法和 COMSOL 软件用于预测均匀的温度分布。因此,在设计任何气体传感器和 MEMS 之前,微加热器热区的温度控制非常重要。压力。使用金属 (MOx) 技术可以将 MEMS 技术与其他技术结合起来。 Płyta grzejna jest kluczowym elementem tych czujników do kontrolowaniaTemperature Warstwy czujnikowej。 W tej pracy wykonano i zaprojektowano Meandrowy grzejnik na bazie platyny。 Metoda 3D-TLM 是一种通过 COMSOL 程序传输的 Macierz 语言,可用于测量温度。控制温度和微机电温度是 MEMS 项目中的一个重要问题。 ( 分析方法 3D-TLM i oprogramowaniem COMSOL Multiphysics dla czujnika gazu MEMS ) 关键词:基于 MEMS 的气体传感器、微型加热器、3D-TLM、COMSOL Multiphysics、均匀温度分布。主题:基于 MEMS 的气体传感器、微控制器、3D-TLM、COMSOL Multiphysics、温度传感器。简介基于 MEMS 的气体传感器(微机电系统)具有相当有趣的特点,例如高灵敏度、低成本和越来越小的尺寸。MOX 传感器是家庭、商业应用和工业安全设备中最主要的固态气体检测设备。然而,这种传感器的性能受到其加热板的显著影响,加热板控制传感层的温度,传感层应在加热器区域所需的温度范围内,以便检测不同的气体。这些传感器是由 Taguchi [1] 首次开发的。它们的工作原理基于金属氧化物层的电导率随周围气体性质的变化而变化。然后,这些传感器的结构可以小型化,因为它们的制造与微电子工艺兼容。这样可以降低成本,并可以将这些传感器和相关电子电路集成到单个组件中。许多研究都集中在微传感器的设计和建模上,例如 M. Dumitrescu 等人 [2] 和 S.Semancik 等人 [3] 的研究,他们在兼容的 SiO 2 平台上引入了多晶硅微加热板平台并集成了片上电路。M. Afridi 等人 [4] 设计了一种带有多晶硅微加热器的单片 MEMS 气体传感器。之后,J. Cerda Belmonte 等人 [5] 描述了检测 O 2 和 CO 气体的制造工艺。2007 年,Ching-Liang Dai 等人 [6] 设计了一种基于 WO3 纳米线的片上湿度传感器,JF Creemer 等人 [7] 提出了一种 TiN 微加热板。而 G.Velmathi 等人 [8] 提出了一种基于 TiN 微加热板的传感器。 [8] 提出了各种微加热器几何形状,M. Gayake、Jianhai Sun [9, 10] 通过有限元法模拟比较了这些基于聚酰亚胺的微加热器几何形状。2017 年,T. Moseley [11] 介绍了半导体金属氧化物气体传感器技术的发展进展,刘奇等人 [12] 综述了基于单层 SiO2 悬浮膜的新型形状微加热板的热性能可能性。R. Jagdeep 等人 [13] 提到
交通车辆和网络系统效率可以用两种方式来定义:1)减少系统中所有车辆的行程时间,2)减少系统中所有车辆的总能耗。实现这些效率的机制被视为独立的(即车辆和网络领域),当结合起来时,迄今为止尚未得到充分研究。本研究旨在整合以前开发和发表的关于预测最优能源管理策略 (POEMS) 和智能交通系统 (ITS) 的研究,以满足量化由同时进行车辆和网络优化而带来的系统效率改进的需求。POEMS 和 ITS 是部分独立的方法,它们不需要彼此发挥作用,但各自的有效性可能会受到彼此存在的影响。为了
通过在线 UV-VIS 分析和 PAT 驱动的 UF/DF 系统克服 TFF 中的挑战 质量依赖型 TFF 系统带来的最常见挑战包括过程碎片化、测量结果不稳定以及人为失误的风险很高。解决这些挑战需要采用新颖的方法,并具备实时在线产品样品和测试、自动化仪表、分析检测、连续生物处理和验证服务等功能。两种现有的 Repligen 产品 — KrosFlo ® KR2i 系统和 CTech™ FlowVPX ® 系统 — 可以成功结合使用以实现这些目标并应对 TFF 系统的挑战。KrosFlo KR2i TFF 系统是一种自动化的实验室规模 TFF 系统,用于下游应用,而 CTech FlowVPX 系统是一种在线 UV-Vis 光谱仪,具有改变光程的独特能力。它们共同构成了“实时过程管理”(RPM™)系统,该系统通过浓度测量控制为UF/DF过程提供过程管理。
– – 英国罗切斯特:商业和军事应用的飞行控制、机上娱乐和平视显示器;电力分配系统、驾驶舱系统、机身系统控制与监控、客舱系统、检测与警报系统以及商业应用的数据分发 – – 华盛顿州雷德蒙德:飞行控制和平视显示器 – – 印第安纳州韦恩堡:商业和军事应用的发动机控制、飞行控制和线束;飞行控制、电力分配系统、驾驶舱系统、机身系统控制与监控、客舱系统、检测与警报系统以及商业应用的数据分发 – – 新加坡:商业应用的飞行控制、电力分配系统、驾驶舱系统、机身系统控制与监控、客舱系统、检测与警报系统以及商业应用的数据分发
每个轴轴智能面板都可以在AD-NET-Plus-per-per-Poer网络上容纳远程图形LCD网状网(具有或没有系统控制功能)。可以根据安装需求创建多个信号器位置。这些位置可以具有:没有系统控制,部分系统控制或完整的系统控制。此外,可以对系统状态更改的信息进行矢量,从而使显示器仅接收与特定事件有关的信息。轴轴智能面板可以相对容易地容纳非常大的,复杂的应用。当安装超过单个面板的容量时,可以实现高级AD-NET-Plus-Plus网络,最多可提供200个网络节点。根据整体安装要求,AD-NET-Plus完全可用于室内面板功能或信息和控制的隔离。
最初的调试期结束后,雷根(Raygen)在第三方系统集成商(以前曾签订了设计和建造ORC)的协助下开始了最终调试过程,以委托整个工厂和系统控制。植物和系统控制既包含了每个子系统的性能和相互作用,又涵盖了植物相对于网格的整体性能和混合操作方案。这个最后的调试期限于2024年7月完成,该工厂现在100%运营。自这段时间以来,该工厂已根据Raygen的定制调度控制器自动操作。
• 充电/放电检测。 • 故障诊断和保护系统控制。 • 电压和电流测量, • SOC和SOH计算, • 与BAU的数据通信;