摘要 — 在量子力学细节层面模拟物理系统的时间演化——称为哈密顿模拟 (HS)——是物理学和化学领域一个重要而有趣的问题。对于这项任务,已知在量子计算机上运行的算法比传统算法快得多;事实上,这一应用促使费曼提出了量子计算机的构建。尽管如此,要达到这种性能潜力仍面临挑战。先前的工作重点是编译 HS 的电路(量子程序),目标是最大限度地提高准确性或门取消。我们的工作提出了一种同时推进这两个目标的编译策略。在高层次上,我们使用经典优化(例如图着色和旅行商)来排序量子程序的执行。具体而言,我们将哈密顿量(表征量子力学系统的矩阵)中相互交换的项组合在一起,以提高模拟的准确性。然后,我们重新排列每个组内的项,以最大限度地提高最终量子电路中的门取消。这些优化措施共同提高了 HS 性能,使电路深度平均减少了 40%。这项工作推动了 HS 的发展,进而推动了基础科学和应用科学领域的物理和化学建模。
摘要:社区全球观测系统模拟实验(OSSE)包(CGOP)由美国国家海洋和大气管理局(NOAA)和联合卫星数据同化中心(JCSDA)开发,它提供了一种工具,可以定量评估新兴环境观测系统或新兴现场或遥感仪器对 NOAA 数值天气预报(NWP)预报技能的影响。OSSE 的典型第一步是模拟来自所谓自然运行的观测。因此,需要观测的空间、时间和视图几何来从自然运行中提取大气和表面变量,然后将其输入到观测前向算子(例如辐射传输模型)中以模拟新的观测。对于尚未建造仪器或尚未部署平台的新提出的系统来说,这是一个挑战。为满足这一需求,本研究引入了一个轨道模拟器,根据特定的托管平台和机载仪器特性计算这些参数,该模拟器由美国国家海洋和大气管理局卫星应用与研究中心 (STAR) 最近开发并添加到 GCOP 框架中。除了模拟现有的极地轨道和地球静止轨道之外,它还适用于新兴的近空间平台(例如平流层气球)、立方体卫星星座和苔原轨道。观测几何模拟器不仅包括被动微波和红外探测器,还包括全球导航卫星系统/无线电掩星 (GNSS/RO) 仪器。对于被动大气探测器,它计算不同平台上拟议仪器的几何参数,例如随时间变化的位置(纬度和经度)、扫描几何(卫星天顶角和方位角)和交叉轨道或圆锥扫描机制的地面瞬时视场 (GIFOV) 参数。对于 RO 观测,它确定卫星或平流层气球上的发射器和接收器的几何形状并计算它们的倾斜路径。该模拟器已成功应用于最近的 OSSE 研究(例如,评估未来地球静止高光谱红外探测器和平流层气球 RO 观测的影响)。
摘要:尽管以前和当前的地球观测平台产生了丰富的数据,以供应气候模型,天气预报,灾难监测服务以及无数其他应用程序,但公众仍然缺乏能够访问现场真实色彩,对我们的星球的全球视野,并将其推向实现其脆弱性的能力。长期以来,来自太空的地球摄影商业化的想法一直受图像的分析价值的主导。可以从这些地球表面的这些频繁重新审视中获得哪些特定知识和可行的智能?如何找到该分析的市场?但是,很少考虑图像的教育价值是什么?随着学生和儿童在观察我们当前的行星状态方面的几十年进步时,我们应该找到一种有用的机制来满足他们的好奇心,有助于满足我们孩子的简单寻求探索和更多地了解他们所看到的东西。以下研究描述了当前的GEO和LEO观察平台不足以在更新的5分钟时间尺度上提供真正的全局RGB覆盖范围,并提出了一种替代性,低成本的Geo + Molniya 3U Cubesat constellation来执行此类应用。
摘要对空间太阳能激光系统进行了模拟模型,以将功率传递到地球上。该系统由安装在卫星上的浓度系统组成的太阳能激光器组成。将所得的激光束重新定向到地球表面,在那里可以使用它来产生功率。计算激光的强度和差异是为了获得适当的太阳能激光系统作为匹配和陆地应用匹配的卫星上的有效载荷。根据我们的模型,当我们使用半径为5厘米,长度为10 cm的频率ND:YAG激光杆可以获得大约40 kW激光器,当我们使用直接太阳能泵送100 m的抛物线式泵送时,与3D-Cpc Ancoccal Ancoccal Ansance Ansance Ansance Ancectance Accom Accom Accom Accom Accom Accom Accom Accom Accom Accom Accom Accom Accom。
在直流微电网 (dc MG) 中,直流链路电容器非常小,无法提供固有惯性。因此,在负载变化或电力资源波动的不确定波动期间会出现较大的电压偏差。这会导致电压质量下降。为了克服低惯性问题,本文提出了一种快速响应的能量存储系统,例如超级电容器,它可以通过某些特定的控制算法模拟惯性响应。双向直流-直流转换器用于将超级电容器能量存储连接到直流 MG。所提出的控制方案由虚拟电容器和虚拟电导组成。它在内环控制中实现,即电流环控制足够快地模拟惯性和阻尼概念。为了研究直流 MG 的稳定性,推导了一个全面的小信号模型,然后使用系统的根轨迹分析确定了可接受的惯性响应参数范围。通过数值模拟证明了所提出的控制结构的性能。
由于连续的阴雨天或阴天会导致太阳辐射间歇,这是简易小型太阳能干燥机的一个限制。这些条件常常使它们无法使用。通过加入储存系统(热积累)和/或辅助能源,即使在日照量低的时期也可以连续进行干燥过程或脱水。因此,本研究模拟并评估了一种混合系统的热行为和能量行为,该系统用于加热流向太阳能食品干燥机脱水室的空气。用于模拟的软件是 TRNSYS。模拟的混合系统由一个平板太阳能集热器和一组电阻器组成,可确保空气以恒定的温度进入脱水室。选定的目标温度为 70 o C,假设脱水室中没有食品。考虑到巴西南部城市的气候条件,采用四个电阻器(总功率为 1900 W,功率分别为 1000 W、500 W 和 200 W)的布置足以保证空气以恒定的温度进入。