认知战利用科技和科学的新发展来影响目标人群的思维和行为方式。建立足够的认知战防御需要研究作战方式以了解这一新兴行动空间。这包括可以通过科学技术实现的目标和方法。最近的文献表明,人类和非人类认知都应被视为认知战的目标。目前还没有框架可以统一概念化与领域和物种无关的短期和长期认知战目标和攻击方法。需要一个通过自下而上的方法开发的框架,该框架以神经科学原理为基础,以捕捉认知的相关方面。该框架的复杂程度应使战争决策者能够采取行动。在本文中,我们试图通过提出“拔掉、破坏、解构、诊断、增强”(UnCODE)系统来对认知战的目标和方法进行分类,以弥补现有的差距。该系统以神经为中心,从对抗方法与个人或社会中的神经信息处理的关系的角度概念化认知战目标。UnCODE 系统确定了五大类目标:1) 消除目标产生输出的能力,2) 降低目标处理输入和产生输出的能力,3) 偏向目标的输入输出活动,4) 监视和了解目标中的输入输出关系,以及 5) 增强目标处理输入和产生输出的能力。根据对目标神经系统的访问,方法可分为两类:直接访问和间接访问。UnCODE 系统与领域和物种无关,并允许在跨领域传达攻击路径时进行跨学科通约。总之,UnCODE 系统是一个统一的框架,它捕捉了如何使用多种方法来实现相同的认知战目标。
• 确保最大限度地利用 Commerce RI 的业务开发和支持服务来支持该州的食品相关目标。 • 定义和建立核心战略,以改善罗德岛州食品和饮料企业的环境;保护和发展罗德岛州的农业和渔业;维持和创造罗德岛州食品和饮料产品的市场。 • 与州机构合作制定政策,包括州采购战略,以发展当地食品、农业和海鲜企业,提高罗德岛州食品系统的弹性,并支持优质食品相关工作的增长。 • 与食品行业的当地企业以及当地政府和社区团体联络,协调计划,获得他们的帮助或协助他们发起、开发和实施项目。 • 与 Commerce RI 营销团队合作开发材料和附属品。 • 与食品和饮料利益相关者建立新的关系并培养长期关系,以扩大食品和饮料业务机会渠道并克服发现的任何渠道障碍。 • 评估当前和未来的行业需求,启动和管理战略计划,以在罗德岛建立食品商业生态系统,吸引外州企业到罗德岛,并协助州内公司扩张 • 评估食品市场趋势并制定计划,以最好地利用高增长、高影响力的食品战略努力,根据不断变化的需求和影响扩大、修改或取消计划 • 通过联邦拨款和私人慈善事业为州的当地食品系统确定并获得资金。与联邦政府就监管和联邦立法障碍和机遇进行沟通。 • 协调机构间食品和营养政策咨询委员会 (IFNPAC)。与 IFNPAC 成员机构的领导层和关键员工建立并保持工作关系,以确保成员机构利益相关者参与州的食品政策议程。
摘要临床问题钠-葡萄糖协同转运蛋白 2 (SGLT-2) 抑制剂对患有慢性肾脏病 (CKD) 的成年人的生存率以及心血管和肾脏结果有何影响?当前实践很少有疗法可以减缓肾脏疾病的进展并改善患有 CKD 的成年人的长期预后。SGLT-2 抑制剂已证明对患有或不患有 2 型糖尿病的 CKD 成年人具有心血管和肾脏益处。现有的 SGLT-2 抑制剂指南并未考虑到目前针对患有 CKD 的成年人的最佳证据的全部,并且未根据 CKD 进展和并发症的风险为所有风险组提供完全分层的治疗效果和建议。建议指南小组考虑了五年内 SGLT-2 抑制剂治疗对 CKD 成人患者的益处和危害证据以及相关因素,并提出了以下建议:1. 对于 CKD 进展和并发症风险较低的成人,我们建议使用 SGLT-2 抑制剂(弱推荐支持)2. 对于 CKD 进展和并发症风险中等的成人,我们建议使用 SGLT-2 抑制剂(弱推荐支持)3. 对于 CKD 进展和并发症风险较高的成人,我们建议使用 SGLT-2 抑制剂(强烈推荐)4. 对于 CKD 进展和并发症风险极高的成人,我们建议使用 SGLT-2 抑制剂(强烈推荐)。这些建议适用于所有 CKD 成人患者,无论其是否患有 2 型糖尿病。本指南的制定方式 一个由患者、临床医生和方法学家组成的国际专家组遵循可靠指南的标准并使用 GRADE 方法制定了这些建议。专家组使用由改善全球肾脏疾病预后组织 (KDIGO) 开发的分类系统确定了患有 CKD 的成年人的典型风险层(从低风险到非常高的 CKD 进展和相关并发症风险),并应用了个体患者视角从证据转向建议。SGLT-2 抑制剂的效果以绝对值解释,适用于具有不同基线预后风险的不同风险层
欧洲竞争力指南针为我们的食品链指明了正确的方向 布鲁塞尔,2025 年 1 月 29 日 欧洲竞争力指南针是一个积极的进步,但成功取决于采取行动。欧盟食品和饮料行业——欧洲最大的制造业——支持指南针简化监管和更好地协调欧盟和国家政策的目标。竞争力对于欧洲食品和饮料制造商至关重要,他们面临着成本上升、单一市场分散、劳动力短缺和供应链中断等问题。作为一个战略性行业,我们需要投资、创新和精简的政策,以确保食品链的弹性和可持续性。FoodDrinkEurope 总干事 Dirk Jacobs 表示:“竞争力指南针为欧洲工业的未来指明了光明的方向。作为欧洲繁荣和社会稳定的战略支柱,食品和饮料行业已准备好共同创造解决方案,以推动我们食品链的投资、创新和弹性。现在是时候从言辞转向采取有意义的行动了。”虽然备受期待的《农业和食品愿景》将为我们的食品系统确定战略方向,但今天的《竞争力指南》和相关提案也需要通过优化生产条件、减少过度的行政负担、促进投资和释放农业食品领域的创新,优先考虑欧洲食品链的竞争力。即将出台的综合提案也是如此,我们期待它成为一种保持环境目标的工具,同时简化可持续财务报告、可持续性尽职调查和分类法等领域。欧盟食品和饮料行业购买了欧洲约 70% 的农产品,是推动我们食品链变革的驱动力。我们希望《清洁工业协议》也能在推进气候目标的同时确保农业食品的竞争力,尤其是对于能源密集型食品加工。初创和扩大规模战略等措施对于支持欧洲 300,000 家食品和饮料公司也至关重要,其中 99% 是中小企业。竞争力指南制定了远大目标,但结果如何还需拭目以待。现在是时候为欧洲经济带来成果了。
1。简介教育中的人工智能(AIED)和辅助技术(AT)旨在开发适合学习者能力的用户特定解决方案。至关重要的方面是考虑到每个学习者的特殊性,以提出一个智能学习环境,利用学习者的互动行为。可以在AIED的背景下区分两种主要方法,这些方法是由计算机支持的学习(Kirschner和Gerjets,2006)和以学生为中心的学习(Calder,2015)。在计算机支持的学习中,学习内容的适应性很简单,因为它为实施适应算法提供了合适的背景(Spüler等,2016)。尽管有多种学习环境,例如Iweaver(Wolf,2003),Inspire(Papanikolaou等,2002)或Colcularis(Käser等,2013),试图实施学习过程适应的尝试表明结果不满意。在与学习者的互动中,这些系统本质上是基于所谓的教学剂(PA),这些教学剂(PA)以极大的自主权在学习者的互动中支持。关于学习者和PA之间可以进行的多相互作用,这些环境可以支持个性化和协作学习。这些环境中使用的共同体系结构基于四个模块(Moreno等,2001; Kim and Baylor,2006; Hooshyar等,2015),即域模块,学习者模块,教学模块和界面模块。在一般情况下,域模块代表特定领域的专家知识。(2)干扰?它不仅包含获得技能的专业知识,而且还提供了建立能力的内部代表。域模块必须能够在放置学习者的同一上下文中生成解决方案。这允许系统确定学习者和导师行动中的差异和对应关系。学习者模块提供了有关问题的学习者知识测量。这是专业知识,知识,认知概况和学习者历史的元组。教学模块允许定义调解以帮助学习者学习过程。它必须考虑每个教育,教学和心理原则。该模块的主要目的是回答三个问题(1)为什么要干扰?和(3)如何干预?交互模块是系统内部表示和学习者接口连接的负责。该模块与教育系统和学习者的评估技能永久合作。另一方面,它决定了系统用于传输信息的最终形式。
Vyesi001@odu.edu ____________________________________________________________________________________________ 摘要 评分者间信度可以看作是评分者对给定项目或情况的一致程度。已采取多种方法来估计和提高受过训练的事故调查员使用的美国国防部人为因素分析和分类系统的评分者间信度。在本研究中,三名受过训练的教练飞行员使用 DoD-HFACS 对 2000 年至 2013 年之间的 347 份美国空军事故调查委员会 (AIB) A 级报告进行分类。总体方法包括四个步骤:(1) 根据 HFACS 定义进行训练,(2) 验证评级可靠性,(3) 评估 HFACS 报告,以及 (4) 随机抽样以验证评级可靠性。属性一致性分析被用作评估评分者间信度的方法。在最后的训练验证轮中,评估员内部一致性范围为 85.28% 至 93.25%,每个评估员与标准的一致性范围为 77.91% 至 82.82%,评估员之间的一致性为 72.39%,所有评估员与标准的一致性为 67.48%。HFACS 评级摘要随机样本的相应一致性为评估员内部 78.89% 至 92.78%,评估员之间的一致性为 53.33%,这与之前的研究一致。这项试点研究表明,训练-验证-评级-确认属性一致性分析方法有可能有助于提高 HFACS 评级的可靠性,并有助于准确捕捉人为因素对飞机事故的影响。需要进行额外的全面研究来验证和充分开发所提出的方法。关键词 事故调查,HFACS,内部评估者信度 简介 Reason (1990) 事故因果模型,也称为瑞士奶酪模型,是一种理论模型,旨在解释事故如何在组织层面上表现出来。该模型的主要假设是,事故发生的方式使得原因在组织层面上具有关系。第二个假设是,至少组织层面需要共同努力以防止事故发生。根据这些假设,Reason 理论认为,大多数事故都可以追溯到先前组织层面的潜在人为失误导致的主动和潜在人为失误。自 2005 年以来,美国国防部 (DoD) 一直使用 HFACS (DOD, 2005) 作为 DOD HFACS,特别是在不安全行为前提条件和不安全行为层面进行了一些更改。.人为因素分析和分类系统 (HFACS) 最初由 Wiegmann 和 Shappell (2003) 根据 Reason 模型改编而成,适用于航空领域,该系统确定了组织内可能发生人为错误的四个层级:组织影响、不安全监督、不安全行为的先决条件和不安全行为。DOD HFACS (2005) 由 4 个主要层级、14 个子类别(在 Wiegmann 和 Shappell 的研究中称为类别)和 147 个纳代码组成,用于对导致飞机事故的组织人为错误进行详细分类。
空战司令部 (ACC) 依靠空战机动仪表 (ACMI) 系统进行空对空作战训练和大规模部队部署飞行汇报。尽管这些系统可以非常有效地增强训练效果,但它们非常昂贵,并且通常需要在受限空域范围内飞行。这些因素阻碍了全舰队每天实施 ACMI 训练。基本的 ACMI 系统确定飞机位置和性能数据,并将数据传输到地面监测站进行记录、显示和汇报。早期的喷气式战斗机需要特殊的外部组件或“吊舱”来计算数据并将其传输到定制的计算机化汇报设施。现代飞机不再有这种限制,而且低成本的个人计算机现在提供的计算和图形显示功能足以进行 ACMI 汇报。当前的航空电子系统计算所有必要的数据,并在飞机航空电子系统总线上报告所需的参数。监控和记录这些机载数据将减少对特殊范围的要求,消除吊舱要求,并允许在战斗机中队通常可用的常规计算机设备上进行汇报和演示。内部数据还提供吊舱系统无法提供的航空电子参数。这些数据代表了飞行汇报的巨大未开发资源。内部系统提供的最大潜在贡献可能涉及战斗任务汇报能力。由于外部吊舱占用武器站,机组人员极不可能将这些组件带入战斗。内部组件是唯一可以为战斗任务汇报提供 ACMI 功能的替代方案。此外,内部组件保留了飞机的空气动力学和雷达信号特征,这是隐形飞机使用必不可少的功能。这种新的 ACMI 概念将减少对外部吊舱和其他支持设备的需求,并为每个任务提供基本的 ACMI 功能,与当前和计划中的基于吊舱的实施相比,可能节省大量成本。提议的替代方案还可以作为大型部队训练演习的重要补充,因为这些任务可能会继续依赖外部吊舱。在日常任务中提供基本的 ACMI 功能与偶尔的全面演习相结合时可提供显着的协同效应。ACC 目前正在开发新的 ACMI 吊舱和先进的训练系统。该内部解决方案提案以大型演习所需的独特功能换取便利性、易用性和基本 ACMI 功能的日常可用性,同时又不降低实战训练的价值。正在考虑的系统称为联合战术作战训练系统 (JTCTS),它将全球定位系统技术与 ACMI 设备相结合,并提供广泛的新功能。提议的功能包括电子战训练、“无投掷”弹药投掷训练以及将模拟器和虚拟训练系统与实弹任务连接起来的能力。对于此应用,基于吊舱的系统可能是近期的最佳解决方案。但是,可以为所有现代飞机提供基本的 ACMI 功能
用于 HFACS 评分者间信度评估的属性一致性分析方法 T. Steven Cotter 老道明大学 tcotter@odu.edu Veysel Yesilbas,博士。 Vyesi001@odu.edu ____________________________________________________________________________________________ 摘要 评分者间信度可以看作是评分者对给定项目或情况的一致程度。已经采取了多种方法来估计和提高受过培训的事故调查员使用的美国国防部人为因素分析和分类系统的评分者间信度。在本研究中,三名经过培训的教练飞行员使用 DoD-HFACS 对 2000 年至 2013 年期间的 347 份美国空军事故调查委员会 (AIB) A 级报告进行分类。总体方法包括四个步骤:(1) 训练 HFACS 定义,(2) 验证评级可靠性,(3) 评级 HFACS 报告,以及 (4) 随机抽样以验证评级可靠性。属性一致性分析被用作评估评级者间信度的方法。在最后的训练验证轮中,评估者内部一致性范围为 85.28% 至 93.25%,每个评估者与标准的一致性范围为 77.91% 至 82.82%,评估者之间一致性范围为 72.39%,所有评估者与标准的一致性为 67.48%。HFACS 评分摘要随机样本的相应一致性在评估员内部为 78.89% 到 92.78%,在评估员之间为 53.33%,这与之前的研究一致。这项初步研究表明,训练-验证-评级-确认属性一致性分析方法有可能帮助提高 HFACS 评级的可靠性,并有助于准确捕捉人为因素对飞机事故的影响。需要进行额外的全面研究来验证和充分开发所提出的方法。关键词 事故调查、HFACS、内部评估者可靠性 介绍 原因 (1990) 事故因果模型,也称为瑞士奶酪模型,是一种理论模型,旨在解释事故如何在组织层面上表现出来。该模型的主要假设是事故发生的方式使得原因在组织层面上存在关系。第二个假设是,至少组织层面需要共同努力来防止事故发生。根据这些假设,Reason 理论认为,大多数事故都可以追溯到先前组织层面的潜在人为失误导致的主动和潜在人为失误。.人为因素分析和分类系统 (HFACS) 最初由 Wiegmann 和 Shappell (2003) 根据 Reason 模型改编而成,适用于航空领域,该系统确定了组织内可能发生人为错误的四个层级:组织影响、不安全监督、不安全行为的前提条件和不安全行为。自 2005 年以来,美国国防部 (DoD) 一直使用 HFACS (DOD, 2005) 作为 DOD HFACS,但在不安全行为前提条件和不安全行为层面上进行了一些更改。DOD HFACS (2005) 由 4 个主要层级、14 个子类别(在 Wiegmann 和 Shappell 的研究中称为类别)和 147 个纳代码组成,用于对导致飞机事故的组织人为错误进行详细分类。
IFAM GmbH 是一家专门将微电子技术应用于安全技术的工程办公室,位于德国埃尔福特 Parsevalstraße 2, D-99092。联系信息包括电话 +49 – 361 – 65911 -0 和电子邮件 ifam@ifam-erfurt.de,网站为 www.ifam-erfurt.de。该公司提供 IMT4CPU 模块,其中包括 TTL 输入、串行接口 (RS422、RS485)、USB 接口和 LED 输出等功能。技术规格包括最大工作电压为 30V DC,最大电流消耗为 60/30 mA(12/24 V DC),具有 2 个串行 IF 模块、1 个 RS485 模块、1 个 USB 模块、1 个 LED-IF 模块和最多 128 个 I/O 接口。IMT4CPU 还可用于控制最多 2000 个 LED,可通过 IMT4PROC 接口连接进行编程。它具有 4 个 TTL 输入和最多 48 个继电器输出,用于控制外部设备。Minimax FMZ4100 火灾探测控制面板中的微处理器控制分析单元可有效监控大面积区域并从每个探测器传输数字信息,从而实现单个警报识别并将小区域分组为一个探测器组。火灾探测控制面板 FMZ 4100 具有内置自动中断控制,可快速响应警报信号而不会延迟。面板本身由看门狗定时器监控,每次数据通过其循环运行程序时,看门狗定时器都会重新启动,以防止触发脉冲故障时出现故障。如果发生干扰,只有一个插件单元会因并行操作而无法运行,并且可以在不中断操作的情况下更换有缺陷的组件。FMZ 4100 包含早期 Minimax 设备的基本功能,并符合现代安全系统要求,具有探测器识别、大型 LC 显示屏、报告打印机、状态和干预系统以及与建筑管理系统的接口。这可以快速评估警报以采取预防措施。该面板配备了广泛的分析软件,可区分报警信号和杂散信号,指导用户完成操作阶段,以最大限度地减少错误操作或压力影响的异常行为。FMZ 4100 符合最高安全要求,遵守有效的准则、规范和法规,如 VDE 和 EN 54,并获得德国财产保险协会的批准。面板的模块化设计允许扩展,在其最小的基本设计 (GAB 32) 中可以容纳 2 x 32 个火灾报警组和 32 个主要控制组。通过添加额外的插入式区域模块,FMZ 4100 火灾报警系统可以扩展到最多 3072 个组。主系统控制这些模块,而它们作为从属单元独立运行。该系统可以与最多 8 个立式机柜组合以实现这一总容量。FMZ 4100-GAB 32 型号具有 32 个自动和接触式火灾报警区域,以及用于电气监控和功能报警设备的主控制组。15U 壁挂式机柜提供 128 个自动和接触式火灾报警区以及主控制组。直立式机柜提供线路端接卡,以将每个组连接到线路卡。使用一张线路卡,可以为自动火灾报警、接触式火灾报警和主控制组提供、评估和监控四个报警组。系统将数字化报警信号记录在火灾控制面板中,然后将其与非易失性存储器中的编程值进行比较。如果结果为阴性,则产生报警信号或干扰信号。冗余报警电路确保即使控制系统因干扰或故障而发生故障也能持续运行。此外,探测器识别系统 (ZID-V) 使用微控制器和二次网络数据请求提供有关探测器位置和类型的实时信息。分析软件检查探测器信号的准确性,对其进行评估,并通过 FIFO 电路将结果异步传输到分析单元,结果显示在 8 x 40 字母数字 LC 显示屏上。ZID-V 系统与报告打印机等其他组件相辅相成,形成一个综合信息系统,可快速引入和部署。灭火系统依靠果断和适当的措施才能正常运作。“灭火控制”组件用于管理单区或多区灭火系统,独立于连接到火灾探测控制面板的其他系统运行。每个灭火区都由一个独立运作的灭火控制卡控制,该卡监控和控制探测器、释放装置和报警系统等重要组件。在发生警报时,灭火控制系统会记录探测器信号,发出火灾警报,并激活预编程的控制功能以启动灭火系统。火灾探测控制面板 FMZ 4100 可使用特殊配置程序针对不同应用进行编程,该程序将输入的特性转换为微控制器可理解的“语言”。这提供了最大的灵活性,尤其是在扩展现有系统时。通过现代下拉菜单技术和易于理解的输入说明,编程变得简单。火灾探测控制面板 FMZ 4100 还可以配备免费的可编程继电器,以便进一步组织警报,例如断开空调、中断制造过程、打开排烟挡板等。使用 Minimax 配置程序为每个特定系统确定继电器的操作和逻辑组合。标准功能包括由警报、预报警、干扰触发的操作,以及火灾探测器组的断开。火灾探测控制面板 FMZ 4100 具有标准串行接口,用于连接外部设备(如报警和图形报告系统或打印机),从而实现与上级管理系统的通信。火灾探测控制面板 FMZ 4100 可以通过串行接口与其他面板通信,为中继器面板中的 LED 控制提供 768 个可编程输出。它还具有串行接口,用于将数据传输到台式打印机等设备。该面板提供额外的接口,用于连接消防队控制面板和公共主报警系统,从而能够自动将报警信号传输到消防部门等外部服务。FMZ 4100 旨在适应特殊应用,例如用于木工或喷漆等行业的火花熄灭系统,以及计算中心设备保护。这些定制系统可以集成,而无需额外的分析电子设备,从而确保无缝运行,并具有可调节灭火时间和监测灭火剂供应等功能。气体探测器是一种模块化组件,可轻松集成到 FMZ 4100 中。该自主子系统持续监测气体浓度,当浓度超过预设限值时触发外部设备激活。所有测量数据都记录在 FMZ 4100 中,即使经过长时间后也可以进行事件追踪。控制面板的方案包括消防队操作面板、报告打印机和以 FMZ 4100 为核心的建筑集成。FMZ 4100 火灾探测控制面板多区域 CO2 灭火控制系统,用于喷漆厂和消防队钥匙箱,用于防火。FMZ 4100 面板采用多区域系统,具有自动释放、EMI 保护和光学/声学警报。它还包括用于探测器组的现场端接卡和主 CPU 外围设备评估和控制。附加功能包括: - 自动探测器 - 气体探测 - 浓度显示和操作面板 - 灭火系统,如大水灭火、泡沫/粉末灭火、火花灭火、预作用喷水灭火系统和氩气灭火系统 - Minimax 探测器收集 - 机械关闭排烟口解锁 - 带评估和控制系统的数字系统监控。 - 静态电流监控 - 自动和接触式探测器的探测器识别系统。 - EMI 保护 用于消防的气体探测系统 • 电源:15 V、12 V、5 V、24 V DC • 电池类型:免维护密封电池 (2 x 12 V)、耐深度放电、容量范围特定 • 应用:30 W/60 VA、1.5 A、250 V • 温度范围:-5°C 至 +40°C • 操作区域:干燥区域,限制进入 (G 29013) • 具体数据:+ 串行接口:RS 232C + 控制继电器数量:全套 + 外壳类型:壁挂式,32/32/321(2 x 80U 旋转框架),RAL 7032,灰色,结构化 + 直立机柜:31U、40U 和 128U(RAL 7032、灰色、结构化)• 尺寸:+ 525 x 709 x 275 毫米(32/96/961)+ 800 x 1600 x 500 毫米(128/128/1281)+ 800 x 2060 x 600 毫米(40U)• IP 等级:42、54 • 完整设备重量(不含电池):分别约 48 千克、135 千克和 160 千克 • 颜色:灰色 Minimax GmbH & Co. KG,位于德国巴特奥尔德斯洛 Industriestrasse 10/12,可致电 +49 45 31 8 03-0 或传真 +49 45 31 8 03-2 联系。电子邮件查询可发送至 [email protected],网站访问者可在 www.minimax.de 上获取更多信息。该公司持有 VdS 认证,符合 ISO 9001 F 15e/2.96/2/01.05/HMB 2 标准,编号为 S 89 201 1。该文本在德国印刷,概述了以下详细信息:四组自动探测器、七组接触探测器、四个主要控制组和八个用于非监控组的免费可编程继电器。