Connor Kent, Qiang Shen , Zhipin Liang, Gabrielle Vontz, Caiyue Li, Lei Liu Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112 Background: Aberrant glucose and energy metabolism of cancer cells, a phenomenon referred as the Warburg effect in which most cancer cells produce energy predominantly through aerobic长期以来,在细胞质中的糖酵解是癌细胞的能源生产和合成代谢生长的主要代谢过程,并记录在促进乳腺癌(BC)发育。然而,失调的糖酵解如何促进卑诗省的发展仍然不确定。我们发现线粒体外膜蛋白的Mitoneet或Cisd1具有新颖的功能作为氧化还原酶。mitoneet构成了先前未知的NADH氧化的胞质途径,从而扩大了NAD+池,导致胞质醇中异常增加的糖酵解和ATP/能量产生,使Mitoneet成为势能能源代谢的调节剂。这项研究旨在确定Mitoneet是否充当癌基因,以促进胞质糖溶解,氧化磷酸化以及乳腺癌的增殖和进展。方法:用慢病毒载体转导MDA-MB-231细胞,该载体提供了旨在敲除CISD1的CRISPR-CAS9系统。糖酵解酶和氧化磷酸化复合物通过蛋白质印迹确定。使用ADP/ATP比率测定试剂盒(AB65313)对ADP与ATP的比率进行了量化。通过在6个井板中播种1000个细胞,孵育7个并用晶体紫罗兰色进行克隆生成测定。 单词计数:288/300克隆生成测定。单词计数:288/300MTT分析以评估细胞活力。结果:与对照相比,CISD1基因敲除MDA-MB-231细胞显示出菌落形成降低,氧化磷酸化复合物表达降低,增殖和生存力降低以及ADP/ATP的比率增加。在CISD1敲除MDA-MB-231中,丙酮酸脱氢酶表达增加了。结论:Mitoneet表达的降低会导致三阴性BC细胞系的生存力,增殖和产生降低,进一步支持我们相信Mitoneet作为一种驱动乳腺癌增殖和通过异常能量代谢的癌症的癌基因。
集成的光子学是一种在应用程序的各个领域,包括光学共同传感和生物传感。尤其是,片上生物感应引起了极大的兴趣,这是由于其在低成本,紧凑性和低检测极限方面的潜力。CMOS兼容的氮化硅(SIN X)目前在片上光谱中起着重要作用,是可见/近红外(MR)平台的首选材料[1]。然而,sin x在蓝色/紫外线波长下遭受高吸收损失[2]。已经努力研究了在紫外线波长的波导,但紫外线平台仍处于起步阶段。对于理想的光子平台,低损耗和单模操作对于结合芯片上多个光学组件至关重要。最近,X。Liu等[3]报道了一个单晶AIN平台。从k = 390 nm处的出色胶片质量,中等的波导损失为8 db/cm。然而,即使使用电子束光刻,大波导维度和高指数(N)值为2.2也会导致多模式引导。相反,使用原子层沉积(ALD),氧化铝(A10 X)具有较低的折射率值,高于220 nm [4]的高透明度,可以很好地控制A10 X膜的均匀性和厚度。G.N. West等。 在“ k = 371 nm [5]时,以令人印象深刻的低损失为〜3 db/cm的A1G X波导,需要步进光刻来进行模式波导,然后才能实现单个模式操作。 在402 nm的波长下证明了5 dB/cm的传播损失。G.N.West等。 在“ k = 371 nm [5]时,以令人印象深刻的低损失为〜3 db/cm的A1G X波导,需要步进光刻来进行模式波导,然后才能实现单个模式操作。West等。在“ k = 371 nm [5]时,以令人印象深刻的低损失为〜3 db/cm的A1G X波导,需要步进光刻来进行模式波导,然后才能实现单个模式操作。在402 nm的波长下证明了5 dB/cm的传播损失。此外,它们的平台将氧化硅(Sio X)的实现为硬面膜,后来将其作为顶级层面。尽管这将有效地降低核心和覆层之间的指数对比,然后减少散射损失,但Sio X-覆层不可避免地会抑制平台的生物感应电位。在本文中,我们提出了由常规接触光刻(Karl Suss Ma6对准器)制造的空气层单模A10 X波导。在实施昂贵且耗时的步进光刻之前,该A10 X平台利用了一种高效且具有成本效益的光刻工具来制造紫外线/紫罗兰色频谱设备的研究原型。
医学微生物学简报。医学微生物学讲述ppt pdf。微生物学的原理是什么。微生物学在护理PDF中的重要性是什么。什么是微生物学PPT。微生物学讲述。ppt。医学微生物学是医学和微生物学的交集,重点是人类引起疾病的微生物。它探索了引起疾病的传染病,并解释了我们的身体如何抗击疾病。培养基的准备涉及:1。串行稀释2。倒板法3。传播板法4。条纹表征和识别方法包括:1。形态学2。微观3。生化4。抗生素敏感性测试类型的培养基类型为:1。复合物(例如马铃薯葡萄糖琼脂)2。定义(例如Czapek Dox媒介)3。选择性(例如,Endo Agar,Emb,Mac Conkey琼脂)的目的是获得微生物的纯菌落。串行稀释方法:接种物在正常盐水中经过连续稀释,然后扩散到琼脂板上。浇注板法:在各自的petriplates中,将接种物的连续稀释液添加到熔融琼脂中。各个殖民地被选用于子培养。扩散板法:将稀释的样品放在固化的琼脂上,并用无菌玻璃棒均匀地扩散。条纹板法:此方法涉及使用消毒环或转移针对琼脂板进行平行条纹。有两种类型的条纹:径向条纹和连续条纹。结果表明,初始生长是汇合的,密度降低了条纹,并在条纹结束时形成离散的菌落。文化特征,例如形态差异,用于将微生物分为分类群体。基于细菌细胞壁的差异,有两个主要类别:革兰氏阳性和革兰氏阴性细菌。所使用的主要污渍是晶体紫罗兰色,它是需要碘解决方案有效工作的媒体。次要污渍是safranin。革兰氏阳性细菌显得紫色,而革兰氏阴性细菌则为粉红色。一种阴性染色技术涉及使用印度墨水或黑糖苷等酸性染料,该染料不染色细菌,而是染色背景。这会导致在蓝色背景下透明(无色)细菌。IMVIC测试是一种用于识别细菌物种的方法。它由三个部分组成:吲哚,甲基红色和voges-proskauer测试。这些测试确定细菌是否发酵葡萄糖成某些化合物。柠檬酸盐利用测试确定细菌是否可以使用柠檬酸盐作为能源。所使用的介质是西蒙斯的柠檬酸琼脂,其结果是蓝色变化,表明对假单胞菌的阳性测试。过氧化氢酶测试测量细菌分解过氧化氢的能力。表明对葡萄球菌的阳性测试。抗生素敏感性测试决定了不同抗生素对各种微生物物种的有效性。这是使用琼脂扩散方法完成的,该方法涉及将抗生素放置在琼脂板上并观察每个磁盘周围的抑制区域。
简介:细胞周期处于检查点的监视下,以修复各个相之间的细胞过渡之前的任何损坏。WEE1和MYT1激酶通过在CDK1上添加抑制性磷酸化来监测G2/M检查点,以防止过早进入有丝分裂。WEE1在各种肿瘤中过表达,而MK-1775(WEE1小分子抑制剂)目前正在I/II期癌症临床试验中。尽管显示了MK-1775可以增强其他遗传毒性疗法的作用,但临床抗性却朝向其抗性。在检查MK-1775介导的细胞毒性的机理时,我们将MYT1确定为抗性因子。新兴证据表明,MYT1是重要的癌症治疗靶点。因此,我们正在研究一种新型的MYT1激酶小分子抑制剂RP-6306与MK-1775结合使用,作为潜在的合成致死性癌症治疗。aim:。我们假设MK-1775和RP-6306的组合是针对两个部分冗余激酶对适应遗传毒性应激很重要的抑制剂,将实现合成的致死性,同时绕过单一层次的耐药性发育问题。使用的模型系统:1)宫颈癌细胞系,是四环素可诱导的MyT1表达; 2)通过上调myt1,对MK-1775具有抗性的癌细胞系(乳房和颈椎)。方法:我们使用标准的晶体紫罗兰色生存力测定法在一组肿瘤和非肿瘤细胞系中建立了RP-6306的IC50。之后,我们使用协同效力模型在上面列出的模型细胞系中测试了MK-1775和RP-6306的组合效应。使用克隆生成测定法评估了组合处理对克隆原性的影响。对高含量成像系统上的时间段显微镜用于确定RP-6306和MK-1775对有丝分裂持续时间和细胞命运的影响。结果:我们发现MK-1775和RP-6306组合处理表明,癌细胞系中的协同细胞杀死。WEE1抑制作用显示了通过MYT1抑制的协同细胞杀死,尤其是在诱导的MYT1过表达细胞中。 WEE1和MYT1结合抑制作用可抵抗癌细胞瞬时过表达MYT1的克隆发育潜力的增加。 RP-6306和MK-1775组合治疗促进有丝分裂停滞,导致MYT1过表达细胞的细胞死亡。 我们还发现,用联合处理处理的细胞中细胞死亡的机理是丝粒碎片化导致有丝分裂灾难。 结论:合并的WEE1和MYT1抑制导致合成致死性。 因此,我们的发现强烈表明,MK-1775和RP-6306的组合治疗具有减轻MK-1775耐药性的潜力。 我们的研究有助于开发新型的潜在组合疗法,同时优化和提高MK-1775治疗的潜在临床用途的功效。WEE1抑制作用显示了通过MYT1抑制的协同细胞杀死,尤其是在诱导的MYT1过表达细胞中。WEE1和MYT1结合抑制作用可抵抗癌细胞瞬时过表达MYT1的克隆发育潜力的增加。RP-6306和MK-1775组合治疗促进有丝分裂停滞,导致MYT1过表达细胞的细胞死亡。我们还发现,用联合处理处理的细胞中细胞死亡的机理是丝粒碎片化导致有丝分裂灾难。结论:合并的WEE1和MYT1抑制导致合成致死性。因此,我们的发现强烈表明,MK-1775和RP-6306的组合治疗具有减轻MK-1775耐药性的潜力。我们的研究有助于开发新型的潜在组合疗法,同时优化和提高MK-1775治疗的潜在临床用途的功效。