摘要。深部脑刺激 (DBS) 的术前路径规划是一个多目标优化问题,即在多个放置约束之间寻找最佳折衷点。它的自动化通常通过使用聚合方法将问题转变为单目标来解决。然而,尽管这种方法很直观,但它以无法找到所有最优解而闻名。在本文中,我们引入了一种基于多目标优势的 DBS 路径规划方法。我们将它与经典的多个约束的聚合加权和以及由神经外科医生对 14 个 DBS 病例进行的回顾性研究的手动规划进行了比较。结果表明,基于优势的方法优于手动规划,并且与传统的加权和方法相比,它涵盖了更多相关的最佳切入点选择,因为传统的加权和方法会丢弃外科医生可能喜欢的有趣解决方案。
a。奈良科学技术学院科学技术研究生院,8916-5高山 - 哥,马萨诸塞州伊科马,奈良630-0192,日本。b。数据科学中心,奈良科学技术学院,8916-5高山 - 俄罗斯州,伊科马,奈良630-0192,日本。c。材料信息学计划,RD技术与数字化转型中心,JSR Corporation,3-103-9 TOMAN-ACHI,KAWASAKI-KU,KAWASAKI,KANAGAWA,KANAGAWA 210-0821,日本。d。精细的化学工艺部,JSR Corporation,100 Kawajiri-Cho,Yokkaichi,MIE 510-8552,日本。e。 Keio大学科学技术学院化学系,日本Kohoku-Ku 3-14-1 Hiyoshi,Kohoku-Ku,Kanagawa,Kanagawa 223-8522,日本。f。奈良科学技术学院材料研究平台中心,8916-5高山 - 俄罗斯州,伊科马,纳拉,日本,伊科马630-0192。关键词聚合物,流量合成,自由基聚合,贝叶斯优化,多物镜贝叶斯优化,苯乙烯,苯乙烯,甲基丙烯酸甲酯
深层生成模型最近显示了解决复杂工程设计问题的成功,其中模型预测了解决指定为输入的设计要求的解决方案。ever,在对这些模型进行有效设计探索的对齐方面仍然存在挑战。对于许多设计问题,找到满足所有要求的解决方案是不可行的。在这种情况下,启动者更喜欢在这些要求方面获得一组最佳的帕累托最佳选择,但是生成模型的单程抽样可能不会产生有用的帕累托前沿。为了解决这一差距,我们将使用模拟微调生成模型来实现帕累托 - 前设计探索的新框架。首先,该框架采用了针对大型语言模型(LLM)开发的偏好一致性方法,并展示了用于微调工程设计生成模型时的第一个应用。这里的重要区别在于,我们使用模拟器代替人类来提供准确,可扩展的反馈。接下来,我们提出了Epsilon-Smplamping,灵感来自具有经典优化算法的帕托前期生成的Epsilon-约束方法,以使用精细的模型来构建高质量的Pareto前沿。我们的框架(称为e-Simft)被证明比现有的多目标比对方法产生更好的帕累托前沿。
原文发表时未注明资金来源:本研究由泉州市科技重大专项(批准号:2022GZ8)、闽南理工大学技术创新项目(批准号:23XTD113)、产学研合作资助。
可持续性挑战本质上涉及对多个相互竞争的目标的考虑。帕累托边界(即所有最优解的集合,这些解不能针对一个目标进行改进,否则会对另一个目标产生负面影响)是应对可持续性挑战的关键决策工具,因为它强调了相互冲突的目标之间的内在权衡。我们的研究动机是亚马逊河流域水电战略规划,亚马逊河流域是地球上最大、生物多样性最丰富的河流系统之一,增加能源生产的需求与最大限度地减少有害环境影响的迫切要求不谋而合。我们研究了一种将水电与浮动光伏太阳能电池板 (FPV) 配对的创新战略。我们提供了一种新的扩展多树网络公式,可以考虑多种水坝配置。为了应对扩大帕累托优化框架以解决整个亚马逊河流域的多个目标的计算挑战,我们通过两项改进进一步增强了树形结构网络中帕累托边界的最先进的算法。我们引入了由子边界引起的仿射变换来计算帕累托优势,并提供了合并子树的策略,从而显著提高了优势解决方案的修剪率。我们的实验表明,在保持最优性保证的同时,速度显著提高,在某些情况下甚至提高了一个数量级以上,从而使我们能够更有效地近似帕累托边界。此外,我们的研究结果表明,当将混合水电与 FPV 解决方案配对时,帕累托边界的能量值会显著向更高的方向转变,从而有可能在减轻不利影响的同时扩大能源生产。
符号回归之所以很难,是因为符号表达式的组合空间呈指数级增长。传统上,它依赖于人类的直觉,从而发现了一些最著名的科学公式。最近,在完全自动化该过程方面取得了巨大进展 [6-26],现在已有开源软件可以通过将神经网络与受物理学和信息论启发的技术相结合来发现相当复杂的物理方程 [25]。尽管 [25] 使用未知函数的神经网络近似来发现简化函数属性,取得了最先进的性能,但它是以一种非原则性和临时性的方式实现的,我们用一种通用的、有原则的、更有效的方法取而代之,该方法包含四个主要贡献:
微电子技术的进步使得更高的集成密度成为可能,并且目前正在进行机载系统的大规模开发,这种增长遇到了功耗的限制因素。更高的功耗将导致产生的热量立即扩散,从而导致热问题。因此,随着系统温度的升高,系统的总消耗能量将增加。微处理器的高温和计算机系统的大量热能对系统信心、性能和冷却费用产生巨大的问题。处理器消耗的功率主要来自内核数量和时钟频率的增加,这些功率以热量的形式消散,给芯片设计人员带来了热挑战。随着纳米技术中微处理器性能的显着提高,功耗变得不可忽略。为了解决这个问题,本文使用多目标帕累托前沿 (PF) 和粒子群优化 (PSO) 算法来解决高性能处理器的功耗降低问题,以实现功耗作为优先计算,从而减少目标微处理器单元的实际延迟。仿真验证了概念基础以及关节体和电源电压(V th- V DD )的优化,并显示出令人满意的结果。
I。由于能量短缺和保护环境的增加压力,风能引起了人们的注意。风被认为是清洁能源,可以减轻对化石燃料的依赖。但是,风速的随机特征导致风能输出的波动性和不确定性。因此,风能的高渗透可能会对系统稳定性产生负面影响,并导致侵犯能量平衡约束[1]。实际上,一旦风力渗透成为总能源产量的5%以上,功率质量将受风力发电的不确定性的影响[2]。因此,在风热系统中,重要的是要完美地分配包括风能在内的所有单元的产生,以减轻风力降低。此问题称为功率调度问题。几项研究工作已处理了风热系统的最佳调度。此类问题的解决方案是基于二次编程,遗传算法(GA)[3],粒子群优化(PSO)[4],模拟退火[5],Harmony Search [6],Firefly AlgorithM [7],化学反应[8]等,等等。风的不确定性