量子网络有望为许多破坏性应用提供基础架构,例如EOCIENT长距离量子通信和分布式量子计算1,2。这些网络的中心是使用光子通道之间在遥远节点之间分布纠缠的能力。最初开发用于量子传送3,4和Bell9s不平等的无漏洞测试5,6,最近也对电信FBR进行了纠缠分布,并回顾性7,8。然而,为了完全使用长距离量子网络链接的纠缠,必须知道它在纠缠状态衰变之前在节点上可用。在这里,我们证明了在FBRE链路上产生的两个独立捕获的单个rubidium原子之间的纠缠,长度高达33)km。为此,我们在建筑物400)中的两个节点中生成Atom3photon纠缠,并使用极化量子化的量子频率转换9。长FBR将光子引导到钟形测量设置,其中成功的光子投影测量预示了原子10的纠缠。我们的结果表明,纠缠分布在电信FBRE链接上的可行性有用,例如,对于独立于设备的量子键分布11313和量子中继器协议。提出的工作代表了实现大规模量子网络链接的重要步骤。
卫生科学系 +技术部,HPL J 22,Otto-stern-Weg 7,8093ZürichSwitzerland电子邮件:Marcy.zenobi@hest.hest.hest.ethz.ch.ch.ch.ch.ch.ch.ch关键词:Microgels,Microgels,Bioinks,生物学,挤出生物插入,cartilage,Cartilage,Tissue Engineering Whycres and Mimalian Mimalian Mimalian Mimalian Mimalian Mimalian diverric
量子通信基于量子态的生成和量子资源在通信协议中的利用。目前,光子被认为是信息的最佳载体,因为它们能够实现长距离传输,具有抗退相干性,而且相对容易创建和检测。纠缠是量子通信和信息处理的基本资源,对量子中继器尤为重要。超纠缠是一种各方同时与两个或多个自由度 (DoF) 纠缠的状态,它提供了一种重要的额外资源,因为它可以提高数据速率并增强错误恢复能力。然而,在光子学中,处理线性元素时,信道容量(即最终吞吐量)从根本上受到限制。我们提出了一种使用超纠缠态实现更高量子通信传输速率的技术,该技术基于在单个光子上多路复用多个 DoF,传输光子,并最终在目的地使用贝尔态测量将 DoF 解复用为不同的光子。按照我们的方案,只需发送一个光子即可生成两个纠缠的量子比特对。提出的传输方案为具有更高传输速率和对可扩展量子技术的精细控制的新型量子通信协议奠定了基础。
摘要。对单个量子系统(例如单个光子、原子或离子)的精确控制为一系列量子技术打开了大门。这一概念的目标是创建能够利用量子效应解决数据处理和安全信息传输问题以及比现有方法更有效地对周围世界参数进行高精度测量的设备。量子技术出现的关键一步是二十世纪下半叶的开创性工作,它首先展示了量子力学对自然的描述的矛盾性和正确性,其次,奠定并引入了成为现代量子技术基础的基本实验方法。2022 年诺贝尔物理学奖授予了 Alain Aspect、John Clauser 和 Anton Zeilinger,以表彰他们对纠缠光子的实验、建立贝尔不等式的违反以及开创量子信息科学。
通过光子交换使具有不同特性的量子系统纠缠是构建未来量子网络的先决条件。证明在不同波长下工作的光的量子存储器之间存在纠缠进一步推动了这一目标的实现。在这里,我们报告了一系列实验,其中铥掺杂晶体用作 794 nm 光子的量子存储器,铒掺杂光纤用作 1535 nm 电信波长光子的量子存储器,以及通过自发参量下转换产生的光子对源。通过对从两个存储器重新发射后的光子进行表征,我们发现非经典相关性,其互相关系数为 g (2) 12 = 53 ± 8;纠缠保持存储的输入输出保真度为 F IO ≈ 93 ± 2%;和非局域性,违反了 Clauser-Horne-Shimony-Holt Bell 不等式,其中 S = 2 . 6 ± 0 . 2。我们的原理验证实验表明,纠缠在通过以不同波长工作的不同固态量子存储器传播时仍然存在。
在本文中,我们广泛研究了将纠缠广播为状态相关与状态独立克隆器的问题。我们首先重新概念化状态相关量子克隆机 (SD-QCM) 的概念,在此过程中,我们引入了不同类型的 SD-QCM,即正交和非正交克隆器。我们推导出这些克隆器的保真度将变得独立于输入状态的条件。我们注意到,这种构造允许我们以拥有输入状态的部分信息为代价来最大化克隆保真度。在关于纠缠广播的讨论中,我们以一般的两量子比特状态作为资源开始,然后我们考虑贝尔对角态的一个具体例子。我们在输入资源状态上局部和非局部地应用状态相关和状态独立克隆器(正交和非正交),并根据输入状态参数获得纠缠广播的范围。我们的研究结果突出了状态依赖型克隆器在广播纠缠方面优于状态独立型克隆器的几个例子。我们的研究提供了一个比较视角,即在两个量子比特场景中通过克隆广播纠缠,即当我们对资源集合有所了解时,以及当我们没有此类信息时。
研究人员得出了计算关键量子信息量的公式,包括纠缠熵(量化了纠缠系统的纠缠方式),相互信息(测量系统的两个部分之间的共享信息)和相对熵(量化量的差异)。这些数量对于了解量子系统的不同部分如何相互作用和影响彼此至关重要。