除了 LCRD 之外,ILLUMA-T 的前身还包括 2022 TeraByte 红外传输系统,该系统目前正在低地球轨道上的一颗小型立方体卫星上测试激光通信;月球激光通信演示,在 2014 年的月球大气和尘埃环境探测器任务期间将数据从月球轨道传输到地球并返回;以及 2017 年的激光通信科学光学有效载荷,它展示了与无线电信号相比,激光通信如何加速地球和太空之间的信息流。
葡萄干剂玻璃的散装和薄膜都是有趣的。已经开始探索用于宽带光生成的芯片非线性工艺的葡萄干剂玻璃。此外,也开始使用缺陷工程来制作多层硫化硫化剂薄膜,以用于低功率相变的记忆应用。(ii)使用快速淬灭技术制备硫元化的玻璃,使他的组能够在玻璃形成区域的扩展区域制备玻璃,从而揭开了许多有趣的特性。(iii)观察硫化剂玻璃杯中玻璃转变的负压系数在理解玻璃过渡的性质方面具有重要意义。(iv)GE-SE-TE玻璃具有高达25微米的红外传输玻璃,也已为空间和防御应用准备。红外传输%也约为75%。(v)GE 2 SB 2 TE 5(GST)直接过渡到与SE掺杂时的稳定六角形相是一个重要的观察结果。这项工作表明,向亚稳态的立方相的过渡不是快速有效的相变非挥发性内存应用的重要方面。直接过渡到稳定的六角形相也可能导致快速变化。(vi)通过用较小的原子SE替换较大的原子TE来研究原子大小对相变特性的影响。(vii)探索用于热电应用的葡萄干剂玻璃和玻璃陶瓷。(viii)他们的组还制备了氮化碳(C 3 N 4),该碳被预测为具有
摘要 — 飞机驾驶舱内的通信目前基于有线或射频连接。例如,已经引入无线技术来支持平板电脑。然而,射频技术的使用仍然有限。例如,耳机的无线连接在舒适性和灵活性方面对飞行员来说是一个优势,但也存在一些问题,尤其是射频干扰和音频数据安全问题。基于可见光或红外线的光学无线通信为克服这些问题提供了有趣的可能性。事实上,由于光束被限制在环境中,这项技术可以抵御攻击风险,从而提高安全性。此外,射频免疫可确保没有干扰,从而为通信提供更多资源。本文首次在文献中采用模拟方法研究了飞机驾驶舱内飞行员耳机连接的光学无线信道,并根据给定链路可靠性可实现的最大数据速率确定了其性能。索引术语 — 光学无线通信;红外传输;信道建模。
摘要 — 飞机驾驶舱内的通信目前基于有线或射频连接。例如,已经引入无线技术来支持平板电脑。然而,射频技术的使用仍然有限。例如,耳机的无线连接在舒适性和灵活性方面对飞行员来说是一个优势,但也存在一些问题,尤其是射频干扰和音频数据安全问题。基于可见光或红外线的光学无线通信为克服这些问题提供了有趣的可能性。事实上,由于光束被限制在环境中,这项技术可以抵御攻击风险,从而提高安全性。此外,射频免疫可确保没有干扰,从而为通信提供更多资源。本文首次在文献中采用模拟方法研究了飞机驾驶舱内飞行员耳机连接的光学无线信道,并根据给定链路可靠性可实现的最大数据速率确定了其性能。索引术语 — 光学无线通信;红外传输;信道建模。
摘要 - 自太空时代开始以来,NASA 一直是开发太空通信和导航技术的领导者——尤其是在阿波罗登月任务和 NASA 首次进入深空期间。为了支持未来的探索和科学需求,NASA 正在逐步引入光通信技术来增强其射频 (RF) 系统。光通信将通过提供高数据速率和更好的长距离导航来实现新的科学和探索任务。NASA 已经进行了几次光通信演示,包括月球激光通信演示 (LLCD)、激光通信中继演示 (LCRD) 和太字节红外传输 (TBIRD) 系统。从历史上看,NASA 曾与喷气推进实验室 (JPL) 和麻省理工学院林肯实验室 (MIT/LL) 合作开发光通信技术。除了开展光通信外,NASA 的空间通信和导航 (SCaN) 计划正在经历范式转变,从政府拥有和运营的网络转向尽可能使用商业服务。美国宇航局空间技术任务理事会 (STMD) 与 SCaN 合作,确定了支持未来空间通信和导航所需开发的关键技术,包括增强型射频、光学和第三代合作伙伴 (3GPP) 蜂窝功能以及高速网络。本文简要介绍了一些当前和即将进行的光学演示,并概述了 STMD 对 2030 年以后光通信和导航的设想。
摘要 — 神经形态计算利用时间数据的稀疏性,通过在每个时间步骤激活一小部分神经元和突触来降低处理能量。当部署用于边缘系统中的分割计算时,远程神经形态处理单元 (NPU) 可以通过使用稀疏脉冲无线电 (IR) 波形进行异步通信来降低通信功率预算。这样,输入信号稀疏性直接转化为计算和通信方面的节能。然而,对于红外传输,总能耗的主要贡献者仍然是维持主无线电开启所需的功率。这项工作提出了一种新颖的架构,将唤醒无线电机制集成到由远程、无线连接的 NPU 组成的分割计算系统中。基于唤醒无线电的神经形态分割计算系统设计的一个关键挑战是选择用于感知、唤醒信号检测和决策的阈值。为了解决这个问题,作为第二项贡献,本研究提出了一种新颖的方法,该方法利用物理系统的数字孪生 (DT)(即模拟器)以及称为“先学习后测试 (LTT)”的顺序统计测试方法,提供理论上的可靠性保证。所提出的 DT-LTT 方法广泛适用于其他设计问题,并在此展示了神经形态通信。实验结果验证了设计和分析,证实了理论上的可靠性保证,并说明了可靠性、能耗和决策信息量之间的权衡。
*基于数字U波传输技术,PI/4-DQPSK调制模式,使用国内主控制芯片,传输距离为80米;它具有回响,均衡,智能静音,音频加密和功率调整功能。*它有1个接收器控制器和2个头部载腰袋;频率范围为470MHz-510MHz,540MHz-590MHz,640MHz-690MHz和807MHz-830MHz。*它使用唯一的加密方法进行音频传输来确保会议内容的安全性。*它具有多波段均衡调整功能,2197种均衡调整类型,麦克风均衡器调整功能,具有三个高,中和低音的调整齿轮,每个效果都支持13个调整齿轮。*它具有多齿轮混响调整功能,15625混响效应,效果比例,混响延迟和混响幅度调整,三种声音效应中的每一个都有25个调整齿轮。*接收器的前面板具有2个TFT-LCD显示屏,2个编码旋钮,2个频率扫描物理按钮,2个红外频率绑定物理按钮,1个电源开关按钮和1个二合一的指示灯(红外变速箱灯(红外传输管 +频率频率绑定绑定指示灯));后面板具有1个排队接口,2个XLR-OUT接口,2个BNC接口和1个DC接口。发射器具有1个显示屏幕,4个物理按钮(包括1个静音按钮,1个音量减少按钮,1个音量增加按钮,1个电源开关键),1个电源状态指示灯和1个静音指示灯。*它具有两个平衡的输出和一个不平衡的混合输出。*接收器具有2 2.2英寸TFT-LCD显示屏; *发射器具有0.96英寸的OLED显示屏,该屏幕可以显示频率信息,音频加密状态,功率装备,静音状态和电网信息。*它具有一个按钮静音功能,非常实用。*接收器面板是用精美的工艺制成的,很漂亮。*使用ID代码抗Crosstalk功能,它使用32位唯一的ID代码来接收和发送配对。发送和接收ID代码必须相同,这可以有效地防止相同频率的信号相互干扰。*一键频率扫描以避免干扰;单键红外频率配对,简单操作。*随着电池寿命的较长,发射器可以连续使用10小时。*发射器具有调整量键以调整音量。*传输功率可在7个级别调节,并且可以根据需要调整传输功率。