当前研究的目的是制定乙基纤维素和羟基丙基纤维素基于持续的释放微球,其中包含兰索拉唑作为模型药物。兰索拉唑是II型抗粉药剂时,在其作用中显示出协同作用。 通过W/O/O双乳剂 - 溶剂蒸发方法以不同的稳定剂浓度和不同的乳化速度制备微球,同时保持恒定量的兰索拉唑。 药物脱离的兼容性研究是在制剂开发前通过傅立叶转化红外光谱(FTIR)进行的,仅在微球制造中仅使用兼容的赋形剂。 制备的微球制剂的特征是产量百分比,粒度分析,药物夹带效率,通过扫描电子显微镜(SEM),差分扫描比色法(DSC)和维特罗药物释放行为,表面形态。 将兰索拉唑的熔点,溶解度和紫外线分析等预性研究符合IP标准。 通过红外光谱研究进行的兼容性研究表明,药物与聚合物之间没有显着相互作用。 通过改变表面活性剂和速度的浓度来制备微球。 粒度的增加,乳化剂浓度增加(SPAN-80)。 以增加的搅拌速度获得较小的尺寸。 有趣的是,观察到粒径对体外药物释放没有显着影响。 因此,乳化剂产生了更好的表面特征。兰索拉唑是II型抗粉药剂时,在其作用中显示出协同作用。通过W/O/O双乳剂 - 溶剂蒸发方法以不同的稳定剂浓度和不同的乳化速度制备微球,同时保持恒定量的兰索拉唑。药物脱离的兼容性研究是在制剂开发前通过傅立叶转化红外光谱(FTIR)进行的,仅在微球制造中仅使用兼容的赋形剂。制备的微球制剂的特征是产量百分比,粒度分析,药物夹带效率,通过扫描电子显微镜(SEM),差分扫描比色法(DSC)和维特罗药物释放行为,表面形态。将兰索拉唑的熔点,溶解度和紫外线分析等预性研究符合IP标准。通过红外光谱研究进行的兼容性研究表明,药物与聚合物之间没有显着相互作用。 通过改变表面活性剂和速度的浓度来制备微球。 粒度的增加,乳化剂浓度增加(SPAN-80)。 以增加的搅拌速度获得较小的尺寸。 有趣的是,观察到粒径对体外药物释放没有显着影响。 因此,乳化剂产生了更好的表面特征。通过红外光谱研究进行的兼容性研究表明,药物与聚合物之间没有显着相互作用。微球。粒度的增加,乳化剂浓度增加(SPAN-80)。 以增加的搅拌速度获得较小的尺寸。 有趣的是,观察到粒径对体外药物释放没有显着影响。 因此,乳化剂产生了更好的表面特征。粒度的增加,乳化剂浓度增加(SPAN-80)。以增加的搅拌速度获得较小的尺寸。有趣的是,观察到粒径对体外药物释放没有显着影响。因此,乳化剂产生了更好的表面特征。使用F4公式观察到最高的夹带疗效,其表面活性剂浓度为0.5%,速度为1000 rpm,因此被选为最佳配方。随着恒定表面活性剂浓度下旋转速度的提高,观察到封装效率的提高。在持续旋转速度下的表面活性剂浓度增加会导致药物的封装效率降低。DSC数据表明该药物与两个聚合物之间没有相互作用,这也表明两种药物都分散在无定形状态的聚合物中。SEM研究表明,微球是球形形状,具有粗糙的表面形态,并且发现了颗粒。体外释放曲线在12小时内释放了兰索拉唑的缓慢而稳定的释放模式,发现该药物释放是扩散控制机制,具有Korsmeyer Peppas方程的N值表明非叶酸质量的非叶酸类型。由于这些实验的结果,得出结论,持续释放的微球持续释放的微球通过使用双重乳液 - 溶剂溶剂蒸发技术成功制备了使用乙基纤维素和羟基甲基纤维素作为聚合物的组合。
您将在实验室中学习如何安全处理和使用有机化学品。这将包括正确使用化学通风橱和个人防护设备。您将识别常见有机官能团(烷烃、烯烃、炔烃、烷基卤化物、醇、醚和胺)的化学性质,并测试这些物质的化学反应性。还将使用分子模型探索有机分子中的立体化学和手性概念。将遵循单步合成方案,并探索常见的合成有机技术。这些技术将包括液-液萃取、基于蒸馏、过滤和色谱的分离,以及通过熔点测定、红外光谱和色谱技术对有机分子进行简单表征。学分:3.0 先决条件:无 共同要求:化学 150 同等课程:无
香蕉产业研究发展中心 (BIRDC) 的销售收入达到 25.68 亿乌干达先令(占目标的 51.3%)。采购并安装了实验室设备,例如傅里叶变换红外光谱 (FTIR) 光谱仪、高效液相色谱 (HPLC)、培养箱、烤箱和压片机等。签署了滚筒干燥机的合同,并正在采购其他烘焙设备、仓储设施和冷藏室。国际标准组织 (ISO) 认证的最终审核已通过,得分为 95%。计划的 4,000 公吨新鲜 Matooke 中至少有 20.3% 是从农民那里采购的,22.6% 的 Matooke 被加工成薯片。五个收集中心的建设尚未开始,BIRDC 的机构框架尚未最终确定。
PLS6多波长激光系统旨在支持密封的二氧化碳(CO2)激光弹药筒,该弹药筒在10.6微米的波长或9.3微米或9.3微米或9.3微米的红外光谱和纤维激光镜片中产生强烈的激光镜片,可产生强烈的激光镜片,从而产生强烈的激光镜片,从而产生强烈的in Indivis -inivis -ned Nativies rasereents(106)微米)。为了保护您,这些激光弹药筒包含在1级*外壳中,旨在完全包含二氧化碳激光束和纤维激光束。注意:使用控制,调整或程序以外的其他指定的程序可能会导致暴露于隐形激光辐射的危险水平。
• AS6171/2:外部目视检查 (EVI):包括标记、表面修整、重量、尺寸、SEM • AS6171/3:X 射线荧光 (XRF):包括铅表面处理、厚度 • AS6171/4:去盖/去封装物理分析 (DDPA) • AS6171/5:放射学检查 (RI):X 射线成像 • AS6171/6:声学显微镜 (AM):外部和内部 • AS6171/7:电气测试:曲线轨迹、全直流、交流、开关和功能测试的关键电气参数;包括环境、老化、密封测试 • AS6171/8:拉曼光谱:材料鉴定 • AS6171/9:傅里叶变换红外光谱 (FTIR):材料鉴定 • AS6171/10:热重分析 (TGA):材料分析 • AS6171/11:设计恢复 (DR):设备布局和功能
北卡罗来纳州的一个注射器服务项目——格林斯伯勒的北卡罗来纳州幸存者联盟——拥有一台傅里叶变换红外光谱 (FTIR) 机器。这种烤面包机大小的设备可以让参与者实时检查药物残留,并获得有关所有成分的更具体信息。这种机器在大学化学实验室中很常见,并且已用于其他用途 50 多年。有了这台机器,北卡罗来纳州幸存者联盟可以在几分钟内通知人们有关污染物的信息,并提供相关风险的信息。他们还会发布警报,让社区中的其他人了解这些污染物的迹象以及如何应对。这些机器正逐渐在全美各地的减害项目中得到普及,更多北卡罗来纳州的项目也将从拥有它们中受益。
多糖和蛋白质等天然聚合物被广泛用作制造先进材料的基质[1-4]。在众多的天然聚合物中,细菌纳米纤维素 (BNC)、纤维素纳米纤维 (CNF) 和纤维素纳米晶体 (CNC)(即纤维素的三种纳米形式)目前在现代科学和技术领域备受关注[5-7]。这些纳米级纤维素基质的环保性质、独特性能和多种功能正在被研究,以设计先进的纳米复合材料和纳米杂化材料,应用于力学、光学、电子、能源、环境、生物和医学等众多领域。纳米材料特刊的标题为“先进的纳米纤维素基材料:生产、特性和应用”,汇集了来自世界顶尖科学家研究纳米纤维素的原创研究和评论文章。因此,本期特刊收集了一篇关于纤维素纳米材料表征的评论论文 [8] 和八篇研究论文,重点关注 BNC [9-11]、CNF [12-15] 和 CNC [16] 用作复合材料的增强材料 [13-15] 以及生产燃料电池的离子交换膜 [9]、组织工程和伤口愈合的贴片 [10, 11] 以及用于癌症治疗的纳米系统或纳米载体 [15, 16]。在题为“纳米级红外光谱表征纤维素纳米材料的最新进展”的论文中,Zhu 等人。 [ 8 ] 综述了当前最先进的纳米级红外光谱和成像技术,即基于原子力显微镜的红外光谱 (AFM-IR) 和红外散射扫描近场光学显微镜 (IR s-SNOM),在表征纤维素纳米材料方面的应用最新进展。作者指出,AFM-IR 和 IR s-SNOM 是两种用于纳米级空间分辨率成分分析和化学映射的技术,还可以提供有关纤维素纳米材料的机械、热和电性能的深刻信息 [ 8 ]。Vilela 等人的研究。 [9] 证明了将 BNC(即微生物胞外多糖)与水溶性阴离子磺化木质素衍生物(即木质素磺酸盐)和天然交联剂(即单宁酸)结合起来生产具有良好机械性能(最大杨氏模量约 8.2 GPa)和吸湿能力(48 小时后约 78%)和最大离子电导率为 23 mS cm−1(在 94 ◦ C 和 98% 相对湿度下)的独立均质膜的可行性。尽管所实现的电导率值与文献中报道的其他全生物基离子交换膜相当或更高,但它们仍然比目前燃料电池中使用的标准商用 NafionTM 离聚物低两个数量级。尽管如此,作者认为,这项研究可能有助于开发环境友好型导电隔膜的漫长而艰辛的道路,特别是通过利用农业和工业副产品的剩余原材料 [ 9 ]。Kutov á 等人的研究也同样有趣。[ 10 ] 研究了干燥方法(风干或冷冻干燥)和随后的氩等离子体改性对导电隔膜的影响。
为了克服气味问题,抑制了汗液被细菌降解。在本研究中,改进的复合凝聚技术涉及纳米胶囊的形成,纳米胶囊中储存了抗菌和芳香化合物。改进的复合凝聚技术需要高速混合溶液以生产纳米胶囊。在本研究中,海藻酸钠、明胶和阿拉伯胶被用作壁材。芦荟和薄荷精油被用作核心,其重量与壁材相等。通过傅里叶变换红外光谱 (FTIR)、扫描电子显微镜 (SEM)、甲醛释放测试和 AATCC 100 抗菌活性测试对合成纳米胶囊制备的涂层样品进行表征,以验证具有抗菌和芳香特性的纳米胶囊的形成。
Over the course of 1 week, I learn 12 analytical devices (Transmission Electron Microscopy, UV-Visible Spectroscopy, Water Testing (pH, Turbidity & Total Suspended Solid), Gas Chromatography Mass Spectroscopy, NMR, High Performance Liquid Chromatography, Thermal Gravimetry Analyzer/Differential Scanning Calorimetry, Scanning Electron Microscopy & Field Emission Scanning Electron Microscopy/EDX, Fourier在大学技术中心分析实验室中,转化红外光谱,X射线衍射仪,表面积和孔隙分析仪。我的主管是Hashila夫人,她指导我通过该设施的所有机器,并向所有技术人员进行了介绍。在这里我在中央分析实验室中概述了我在整个期间取得的三个主要结果:
摘要:本研究计划利用印度楝花提取物生物合成 ZnONPs,以预测其抗菌和抗真菌活性。用紫外-可见光谱 (UV-vis)、X 射线衍射仪 (XRD)、傅里叶变换红外光谱 (FT-IR)、扫描电子显微镜 (SEM) 和 EDAX 对用印度楝花提取物合成的 ZnONPs 进行了表征。本研究还涵盖了光催化降解活性 (UV-vis)。XRD 研究显示了 ZnONPs 的晶体结构。SEM 研究给出了粒子聚集的概念。使用圆盘扩散法,在含有印度楝花提取物的 ZnONPs 的抗菌和抗真菌活性中获得了最大抑制区。关键词:ZnO 纳米粒子 (NPs)、印度楝花提取物 (NFE)、光催化降解活性、抗菌和抗真菌活性