目的:复杂的区域疼痛综合征(CRP)诊断由于缺乏客观和确定的测试而构成挑战。尽管红外热摄影,定量Sudomotor轴突反射测试(QSART)和3阶段骨闪烁显像等实验室测试已被视为诊断辅助工具,但它们的使用仍然有争议。这项回顾性研究旨在阐明这些方式对CRP的诊断的诊断有效性和潜在价值。患者和方法:使用布达佩斯标准诊断CRP,红外热摄影,QSART和3相骨闪烁显像是作为辅助测试。使用接收器操作特征(ROC)曲线分析以及敏感性,特异性以及阳性和负类样的比率评估诊断性能。结果:在评估的41例患者中,根据这些标准被诊断出26名(63.4%)。在这三个测试中,只有红外热力计表现出明显的诊断性能(ROC曲线下的面积为0.718; 95%置信区间,0.569–0.866; p = 0.003)。红外热成像显示阳性和阴性的可能性比分别为2.308和0.346,表明临床上有用的结果。三个阳性结果表现出最高特异性(0.933)和阳性预测值(0.917)。结论:在三个针对CRP的实验室测试中,红外热成像是最有用的。关键字:复杂的区域疼痛综合征,红外热力计,定量辅助轴突反射测试,3相骨闪烁显像QSART和3相骨闪烁显像没有显示出明显的诊断性能;但是,结合所有三个测试的结果可能会在某些情况下提供额外的诊断信心。
摘要:本研究提出了一种创新方法,该方法基于低成本红外热成像 (IRT) 仪器的使用,以实时评估脊柱侧弯支具的有效性。确定脊柱侧弯支具的有效性意味着决定支具对患者背部施加的压力是否足以达到预期的治疗目的。传统上,支具有效性的评估依赖于骨科医生在常规随访检查中进行的经验性定性评估。因此,它在很大程度上取决于相关骨科医生的专业知识。在现有技术中,用于确认骨科医生意见的唯一客观方法是基于对脊柱侧弯随时间进展情况的评估,这通常会使人们暴露在电离辐射下。为了解决这些局限性,本研究提出的方法旨在以无害的方式实时、客观地评估脊柱侧弯支具的有效性。这是通过利用热弹效应并将患者背部的温度变化与支架施加的机械压力相关联来实现的。基于此方法的系统已实施,并通过在一家经认可的骨科中心对 21 名患者进行的实验研究进行了验证。实验结果表明,在区分充足和不足压力方面,分类准确率略低于 70%,鉴于此类系统在骨科中心的临床应用,这是一个令人鼓舞的结果,有望进一步推进。
摘要:稀土掺杂纳米粒子 (RENPs) 因其光学、磁性和化学特性而引起材料科学界越来越多的关注。RENP 可以在第二生物窗口 (NIR-II,1000 − 1400 nm) 发射和吸收辐射,使其成为光致发光 (PL) 体内成像的理想光学探针。它们的窄发射带和长 PL 寿命可实现无自发荧光的多路复用成像。此外,其中一些 RENP 的 PL 特性具有很强的温度依赖性,这使远程热成像成为可能。钕和镱共掺杂的 NPs 就是一个例子,它们已被用作热报告基因,用于体内诊断,例如炎症过程。然而,由于缺乏关于这些 NP 的化学成分和结构如何影响其热敏感性的知识,阻碍了进一步优化。为了阐明这一点,我们系统地研究了它们的发射强度、PL 衰减时间曲线、绝对 PL 量子产率和热灵敏度与核心化学成分和尺寸、活性壳和外部惰性壳厚度的关系。结果揭示了每个因素在优化 NP 热灵敏度方面的关键贡献。最佳活性壳厚度约为 2 nm,外部惰性壳为 3.5 nm,可最大化 NPs 的 PL 寿命和热响应,这是由于温度相关的反向能量转移、表面猝灭效应和活性离子在薄层中的限制之间的竞争。这些发现为合理设计具有最佳热灵敏度的 RENPs 铺平了道路。关键词:稀土纳米粒子、核心@壳@壳、温度测定、光致发光发射、NIR、量子产率、PL 寿命。
摘要:表面裂纹是高速导轨(HSR)平板轨道中的典型缺陷,可以导致结构性恶化并降低轨道系统的服务可靠性。但是,如何有效检测和量化表面裂纹的问题目前尚未解决。在本文中,采用了一种基于红外热成像的新型裂纹检测方法来量化轨道板板上的表面裂纹。在这种方法中,首次使用非缩放的Contourlet变换(NSCT)基于图像 - 增强算法处理的红外摄像头的轨道平板的热合器,并且裂缝是通过边缘检测算法的。接下来,为了定量检测表面裂纹,提出了一种像素安排方法,从而可以获得裂纹宽度,长度和面积。最后,在实验室测试中验证了所提出方法在不同温度下的检测准确性,在该测试中,倒入平板的比例模型,并使用温度控制的柜子来控制温度变化过程。结果表明,所提出的方法可以有效地增强图像中表面裂纹的边缘细节,并且可以有效地提取裂纹区域。裂纹宽度的量化的准确性可以达到99%,而裂纹长度和面积的量化的准确性为85%,这基本上满足了HSR-SLAB-TRACK-TRACK-TRACK检查的要求。这项研究可以打开基于IRT的轨道板检查在HSR操作中的可能性,以提高缺陷检测的效率。
摘要。这项研究的主要目的是使用Monte Carlo方法估算表面温度测量的不确定性。计算基于一组具有共同加热壁的平行微型通道中流体流动过程中传热的实验研究。使用红外热力计和K型热元同时进行加热壁表面上的温度分布。红外热成像是非接触式温度测量方法,而热元测量是接触方法(在选定点的测量)。提出并讨论了两种温度测量方法的示例结果。在计算中,使用蒙特卡洛方法来估计表面温度测量不确定性的不确定性。对蒙特卡洛模拟结果和不确定性扩散方法进行了比较分析。发现从这两种方法获得的结果是一致的。
摘要。自由空间光通信在部署方便和成本方面是光纤通信系统非常有前途的替代方案。中红外光具有几个与自由空间应用密切相关的特性:即使在恶劣条件下在大气中传播时吸收率也很低、长距离传播期间波前稳定、以及此波长范围不受任何管制和限制。最近已经展示了利用子带间设备进行高速传输的概念验证,但这一努力受到短距离光路(最长 1 米)的限制。在这项工作中,我们研究了使用单极量子光电子学构建长距离链路的可能性。使用了两种不同的探测器:非制冷量子级联探测器和氮冷却量子阱红外光电探测器。我们在背靠背配置中评估了链路的最大数据速率,然后添加了 Herriott 单元以将光路长度增加到 31 米。通过使用脉冲整形、预处理和后处理,我们在 31 米传播链路的两级(OOK)和四级(PAM-4)调制方案中达到了创纪录的 30 Gbit s −1 比特率,并且比特误码率与纠错码兼容。
致密组织,即使由于激素变化,热成像也不会受到影响。热成像单独使用时的灵敏度为 83%,与 MRI 结合时的灵敏度为 95%。这也具有较高的假阳性率和假阴性率,但可以通过使用增强方法进一步降低。脑热成像的工作原理是发现大脑表面温度的升高。该方法使用各种技术来分析大脑,如颜色分析、不对称分析、人工神经网络、特征提取、数据挖掘技术、分割方法、顺序特征选择技术等。使用热成像检测脑癌始于筛查脑部并分析获得热图的热变化。观察图像,然后按照有序序列开始进一步处理,如预处理、分割、特征提取、分类和后处理。
摘要背景橘皮组织是发达国家 85% 至 98% 的青春期后女性会出现的真皮、表皮和皮下组织常见生理状况。红外 (IR) 热成像技术结合基于人工智能 (AI) 的自动图像处理可以检测出早期和晚期橘皮组织,从而实现可靠的诊断。虽然橘皮组织病变的严重程度各不相同,但每个女性的生活质量,无论是在身体还是情感方面,始终是个人关注的问题,因此需要以患者为中心的治疗方法。目的这项研究的目的是制定一种基于红外成像的客观、快速且经济有效的自动识别不同阶段橘皮组织的方法,可用于预筛查和个性化治疗。材料和方法 在本研究中,我们使用定制开发的图像预处理算法自动选择橘皮组织区域,并将总共 9 种特征提取方法与 9 种不同的分类算法相结合,以基于从 212 名年龄在 19 至 22 岁之间的女性志愿者拍摄的热成像图像确定橘皮组织阶段识别的效果。 结果 方向梯度直方图 (HOG) 和人工神经网络 (ANN) 的组合能够确定橘皮组织的所有阶段,平均准确率高于 80%。对于橘皮组织的主要阶段,平均准确率超过 90%。 结论 使用红外成像实现计算机辅助自动识别橘皮组织严重程度对于可靠诊断是可行的。这种组合可用于早期诊断,以及以客观的方式监测橘皮组织进展或治疗结果。红外热成像与人工智能相结合,有望成为评估脂肪团发病机制和分层的有效工具,这对于在预测、预防和个性化医疗 (PPPM) 中实施红外热成像至关重要。
书面检查程序可提高所收集数据的质量,并确保检查安全进行。关键因素包括安全性、所需条件和数据解释指导。美国国家消防协会 (NFPA) 70E 要求所有人员都接受有关在电气设备附近工作时面临的风险的教育。还必须提供个人防护设备 (PPE),以尽量减少发生事故时的风险。对于热成像师来说,PPE 通常包括防爆服和面罩。作为创建特定检查程序的起点,请查看当前存在的行业标准(请参阅附录)。查看贵公司是否有可用作指南的程序,然后从主要的电气和机械应用开始,并在开发程序时进行改进。避免仅根据温度对发现结果进行优先排序。温度测量可以很好地识别问题,并可能有助于表征问题,但它们并不是确定故障组件原因的最佳方法。您的检查程序应解决使用热成像定位问题所需的条件,并确认进一步排除故障所需的其他技术。
低温燃料是指必须保持在极低温度下才能保持液态的燃料。这样就可以在较小的储罐中大量储存它们。液氧和液氢的组合是最广泛使用的,因为它提供了极好的能量质量比,而且非常清洁,不像许多经常造成污染的非低温燃料。但使用低温燃料也给航天器设计师带来了挑战。“挑战之一是防止气态低温燃料进入发动机的燃料出口”,不来梅大学生产工程系应用空间技术和微重力中心 (ZARM) 电子车间负责人 Ronald Mairose 解释说。“如果发生这种情况,可能会出现空化现象,从而导致严重的