除了上述因素外,EO/IR 传感器的性能还取决于光学元件、探测器和显示器。因此,仅从规格(即不使用详细的工程模型)来评估 EO/IR 传感器的潜在效用是不明智的。尽管如此,在其他所有条件相同的情况下,可以说,对于设计用于识别或确定目标的成像传感器,最好使用具有较小探测器元件的焦平面阵列,假设光学调制传递函数 (MTF) 不限制整个系统的 MTF。这是因为,如果地面采样距离是限制因素,这种设计的分辨率提高将增强范围性能。按照类似的“经验法则”,具有较大焦距的光学元件可以提供更好的分辨率,假设探测器的 MTF 不限制整个系统的 MTF。这是以减少传感器的整体视野为代价的。然而,我们强调,很难预先预测影响图像质量的所有因素如何相互作用;因此我们建议使用建模和详细的系统分析来解释潜在的传感器性能。
纵观战争史,人类的感觉和推理一直是引导投掷武器和直接打击目标的主要工具。然而,在战争的机械化和电子化时代,威胁数量和反应速度出现了新的要求,因此,帮助人类发挥主动性变得至关重要。继 19 世纪下半叶发现和研究光电现象之后,20 世纪初欧洲的科学努力成功开发了用于防空导弹和发热设备的第一批红外 (IR) 探测元件。1933 年,柏林大学的 E. W. Kutzscher 发现硫化铅 (PbS) 是一种光电导材料 [1]。第一次世界大战和第二次世界大战之间的时期以光子探测器和图像转换器的发展为标志。允许夜视的图像转换器是在第二次世界大战前夕开发的,引起了军方的极大兴趣。 1943 年,这些研发成果已准备好投入工业生产,PbS 成为战争期间部署在各种应用中的第一个实用红外探测器 [2]。这些秘密进行的工作导致了最灵敏的德国红外探测器的制造,其结果直到 1945 年之后才为人所知。R. J. Cashman 在美国领导了类似的努力,于 1944 年在西北大学生产了 PbS 探测器 [3, 4]。本文感兴趣的红外辐射源
系统灵敏度 ................................................................................................................ 13 重要火灾灵敏度注意事项 .............................................................................. 13 3、5 和 10 秒的时间延迟设置 .............................................................................. 13 灵敏度设置 ............................................................................................................ 13 DIP 开关访问 ...................................................................................................... 13 继电器设置(仅限 IR3S-R) ...................................................................................... 14 线圈状态设置 ...................................................................................................... 14 继电器触点设置 ...................................................................................................... 14 M ODBUS RTU(IR3S-D 和 AD) ............................................................................. 15 安装 Phoenix PC 设置软件 ................................................................................ 15 Modbus 设置 ............................................................................................................. 16
IRMMW-THz 2023 是一场纯现场活动,今年没有混合组件。完全面对面的会议将在 Centre Mont-Royal 举办,距离麦吉尔大学主校区仅一个街区,可通过所有主要公共交通路线轻松抵达,这些公共交通路线可让您前往蒙特利尔这座迷人的城市的其他地区。Centre Mont-Royal 是一个现代化的会议设施,曾举办过许多著名的会议,非常适合举办我们规模适中的会议,拥有宽敞的研讨会剧院供全体会议使用,并设有方便使用的分组讨论室供我们举办五个平行会议。会议参展商和海报会议将在 Foyer International(3 楼)和 Foyer Mont-Royal(4 楼)举办,为交流和社交活动提供大量机会。除了这份印刷版会议计划外,您还可以通过 Whova 数字平台和移动应用程序访问该计划,我们将在活动期间传达交流和通知。
基于 LSTM 和 TRISHNA 太空任务中使用的设计,多光谱线性阵列为整个光谱范围(短波 (SWIR) 到甚长波 (VLWIR))的红外图像开辟了新的太空商业机会 Lynred 将于 6 月 8 日至 10 日在法国巴黎附近的 Optro 2022 上讨论用于太空应用的多线性和多光谱红外传感器的新发展 法国格勒诺布尔,2022 年 6 月 7 日——Lynred 是一家为航空航天、国防和商业市场提供高质量红外 (IR) 探测器的全球领先供应商,今天宣布推出两款多光谱线性阵列红外探测器,用于一系列地球观测任务。Pega 和 Capyork 旨在集成到成像卫星、用于水循环观察和干旱评估的跟踪和测量仪器以及海陆表面温度监测以及许多其他潜在的商业空间应用中。多光谱红外探测器使用户能够在覆盖从短波到甚长波的红外范围的多个光谱波长带中获得光测量值。它们在卫星上工作,收集沿卫星轨道从同一场景同时拍摄的一系列红外图像数据,检索特定于地球观测应用的科学信息。作为基于 Lynred 为两项太空任务开发的红外探测器的衍生产品:由法国国家空间研究中心 CNES 领导的 TRISHNA(用于高分辨率自然资源评估的热红外成像卫星)和欧洲哥白尼陆地表面温度监测任务 LSTM,Pega 和 Capyork 将使未来的地球观测任务仪器能够:
•新的自动化化学加工(ACP)以较低的成本产生较高的产量。•极端条件下的可靠性极高。•长期的保质期。•密封包装完全消除了对检测区域的湿度攻击。•可用的广泛电气特性。•可用的各种尺寸。•立即交付。•紧凑的集成过滤器/检测器组合。•经100%测试。•艺术微电子制造能力的状态。•专门研究高密度阵列。
致密组织,即使由于激素变化,热成像也不会受到影响。热成像单独使用时的灵敏度为 83%,与 MRI 结合时的灵敏度为 95%。这也具有较高的假阳性率和假阴性率,但可以通过使用增强方法进一步降低。脑热成像的工作原理是发现大脑表面温度的升高。该方法使用各种技术来分析大脑,如颜色分析、不对称分析、人工神经网络、特征提取、数据挖掘技术、分割方法、顺序特征选择技术等。使用热成像检测脑癌始于筛查脑部并分析获得热图的热变化。观察图像,然后按照有序序列开始进一步处理,如预处理、分割、特征提取、分类和后处理。
低温燃料是指必须保持在极低温度下才能保持液态的燃料。这样就可以在较小的储罐中大量储存它们。液氧和液氢的组合是最广泛使用的,因为它提供了极好的能量质量比,而且非常清洁,不像许多经常造成污染的非低温燃料。但使用低温燃料也给航天器设计师带来了挑战。“挑战之一是防止气态低温燃料进入发动机的燃料出口”,不来梅大学生产工程系应用空间技术和微重力中心 (ZARM) 电子车间负责人 Ronald Mairose 解释说。“如果发生这种情况,可能会出现空化现象,从而导致严重的