引言光与原子旋转的耦合是使用光子(1-4)的量子信息处理中的主要工具,并以精确的光学光谱法,实现了原子结构(5、6),时间和频率标准(7)和实验室搜索的确定(8)。这些应用的性能取决于旋转的相干时间以及彼此相处的效率。在致密的原子气体中,光可以有效地与集合的集体原子自旋搭配(9)。然而,在室温及以上,由于原子与环境的相互作用以及动作倾向,这种集体旋转易于发动,这通常将相干时间限制在10至100 ms(10-14)。碱蒸气可以达到1分钟(15 - 18)的连贯时间,并且成功地用于量子磁孔应用中(9),但高质量的涂料在升高的温度下降解并因此限制了碱密度。贵重气体的奇数同位素(例如3他)的核中旋转非零。核自旋受到完整的电子壳的保护,因此表现出非常长的连贯时间,可能是很多小时。这对应于用于精确传感(19,20),医学成像(21)和寻找新物理学(22 - 25)的狭窄核能共振(NMR)(NMR)。由于贵重气体对从红外线到紫外线的光透明,因此对其核自旋的制备和监测通常依赖于与另一种旋转气体的碰撞(26,27)。我们观察到一个实质性的Noble-Gas NMR传感器使用与碱原子的自旋交换碰撞。因为碱旋转确实会亮起来,因此可以按照这种方式进行NMR信号的拾取,并以这种方式进行狭窄的光谱和长期旋转的旋转优先信号(28 - 31)。然而,各种量子光学应用都需要在光和贵族旋转之间有效的双向耦合(32 - 36)。从未实现过与长寿命核自旋的共振光学激发相对应的这种耦合。在这里,我们意识到由碱旋转介导的光和贵族旋转之间的连贯的双向耦合。
通过便携式仪器持续监测心血管疾病的早期诊断对心脏呼吸信号的持续监测,人们对光杀解物学(PPG)的兴趣越来越越来越大。In this context, it is conceivable that PPG sensors working at different wavelengths simultaneously can optimize the identi fi cation of apneas and the quanti fi cation of the associated heart-rate changes or other parameters that depend on the PPG shape (e.g., systematic vascular resistance and pressure), when evaluating the severity of breathing disorders during sleep and in general for health monitoring.因此,这项工作的目的是提出一种新型的脉搏血氧仪,该脉冲血氧仪在传输模式下提供了与三个光波长(绿色,红色和红外线)相关的同步数据记录,以优化心率测量以及对氧饱和度的可靠且连续评估。传输模式在运动伪影中被认为比反射模式更健壮,但是由于该波长在该波长处的身体组织吸光度很高,因此电流脉搏血氧仪无法在传输模式下采用绿光。出于这个原因,我们的设备基于单光雪崩二极管(SPAD),其死亡时间很短(少于1 ns),同时具有单个光子灵敏度和高计率,允许在同一站点和传输模式下获取所有利率的所有利率。先前的研究表明,SPAD摄像机可用于通过远程PPG测量心率,但是到目前为止,从未解决过基于接触SPAD的PPG传感器通过接触SPAD的PPG传感器进行的氧饱和度和心率测量。对六名健康志愿者进行初步验证的结果反映了预期的生理现象,从而在小于70 ms的间隔间隔估计中提供了RMS误差(带有绿光),氧气饱和度的最大误差小于1%的氧气饱和度小于1%。我们的原型展示了基于SPAD的设备的可靠性,用于连续长期监测心脏响应变量,以替代光电二极管的替代方案,尤其是在需要最小的面积和光学功率时。
a. 工作范围包括设计、供货、安装、调试和五年综合保修,以及根据本投标中给出的技术规范,在北方邦各个地方的各个政府建筑中自用(资本支出模式)的各种容量的并网 SPV 屋顶电站的维护和运行。 b. 从 SPV 屋顶系统到配电板的接线将属于中标人的工作范围。 c. 整个系统的性能测试。 d. 远程监控系统 e.所有必要的 UPPCL/DISCOM(电力公司)/电力监察局批准、可行性研究、必要的土木工程、模块结构安装、光伏模块安装、逆变器安装、直流/交流布线和互连、按标准安装避雷器和接地系统、净计量、安排 UPNEDA/UPPCL/电力监察局/UPNEDA 地区办事处进行的所有必要检查(作为预调试的一部分)、光伏电站调试均属于投标人的范围。物品的品牌必须符合 BIS/MNRE 技术规范以及投标人在投标中提供的等效品牌。在有效情况需要时,投标人可在 UPNEDA 主管部门的许可下更改物品的品牌。投标人应提供 MNRE 授权测试中心或 NABL 认可测试实验室出具的拟议物品品牌的测试证书。技术规格 并网太阳能屋顶光伏 (SPV) 发电厂由 SPV 阵列、模块安装结构、电源调节单元 (PCU)(由最大功率点跟踪器 (MPPT)、逆变器、控制和保护装置、净电表、互连电缆、接线盒、配电箱和开关组成)。PV 阵列安装在合适的结构上。并网 SPV 系统不带电池,单向设计应具有必要的功能。SPV 发电厂中使用的组件和零件(包括 PV 模块、金属结构、电缆、接线盒、开关、PCU 等)应符合 BIS 或 IEC 或国际规范(无论此类规范可用且适用)。太阳能 PV 屋顶系统应由以下主要设备/组件组成。 太阳能 PV 模块 电网互动式电源调节单元 安装结构 接线盒。 接地和防雷保护。 防红外线/紫外线 PVC 电缆、管道和配件 远程监控系统 该计划将部署用于发电的太阳能光伏技术晶体基 RTS 项目。项目发起人应遵守 MNRE 不时指定的国家/国际标准。
WatchPAT™ONE (WP1) 设备是一种非侵入式家庭护理设备,用于疑似患有睡眠相关呼吸障碍的患者。WP1 是一种诊断辅助设备,用于检测睡眠相关呼吸障碍、睡眠分期(快速眼动 (REM) 睡眠、浅睡眠、深睡眠和清醒)。WP1 可生成外周动脉张力测量(“PAT”)呼吸障碍指数(“PRDI”)、呼吸暂停-低通气指数(“PAHI”)和 PAT 睡眠分期识别(PSTAGES)。WatchPAT™ONE 胸部传感器提供打鼾水平、身体位置和中枢性呼吸暂停低通气指数(“PAHIc”)。WP1 的 PSTAGES、打鼾水平和身体位置为其 PRDI/PAHI/PAHIc 提供补充信息。 WP1 的 PSTAGES、打鼾水平和身体位置并非旨在用作诊断任何睡眠相关呼吸障碍、开具治疗方案或确定是否需要进行额外诊断评估的唯一或主要依据。PAHIc 适用于 17 岁及以上的患者。所有其他参数适用于 12 岁及以上的患者。WatchPAT 是一种可穿戴设备,戴在手腕上,利用基于体积描记的手指安装探头来测量 PAT™(外周动脉张力)信号。PAT™ 信号是对指尖动脉脉动体积变化的测量,反映了动脉血管舒缩活动的相对状态,从而间接反映了交感神经激活的水平。外周动脉血管收缩反映了交感神经激活,表现为 PAT™ 信号幅度的衰减。手指探头还可以测量 RED 和 IR(红外线)信号,这些信号可用于测量 SpO2 信号。在带有胸部传感器的 WatchPAT™ONE 中,集成的胸部传感器会记录打鼾、身体位置和受试者的胸部运动信号。记录的数据会传输到手机上的应用程序,然后存储在 Web 服务器上。在睡眠研究之后,记录会自动下载,并使用专有的 zzzPAT 软件在离线过程中进行分析。zzzPAT 算法使用 WatchPAT 通道来检测与睡眠相关的呼吸障碍、睡眠分期(快速眼动 (REM)、浅睡眠、深睡眠和清醒)。zzzPAT 使用 WatchPAT 的打鼾和身体位置通道来生成打鼾水平和身体位置离散状态。该软件会发布综合研究报告,其中包含统计数据和图形演示
詹姆斯·韦伯太空望远镜揭开了最伟大的起源故事。韦伯是美国宇航局最新的顶级太空科学天文台——注定会像它的前身哈勃一样家喻户晓。这是美国宇航局科学的阿波罗时刻:韦伯将从根本上改变我们对宇宙的理解。它可以观察整个宇宙,从行星到恒星,从星云到星系甚至更远——帮助科学家揭开遥远宇宙以及离地球更近的系外行星的秘密。韦伯可以以精致的新细节探索我们太阳系的居民,并搜索有史以来第一个星系的微弱信号。从新形成的恒星到吞噬黑洞,韦伯将揭示所有这些以及更多。韦伯的设计旨在建立在其他航天器的突破性发现之上,例如哈勃太空望远镜和斯皮策太空望远镜。哈勃用可见光和紫外光观察宇宙,而韦伯则专注于红外线,这种波长对于透过气体和尘埃观察远处的物体非常重要。继斯皮策在红外领域开辟道路之后,韦伯将凭借面积几乎大 60 倍的主镜带我们走得更远。最后,韦伯的镜子不仅具有哈勃惊人的分辨率,而且灵敏度更高,并且可以在太空中完全调节。韦伯的大镜子和先进的仪器套件受到五层遮阳板的保护,遮阳板展开后大小可与网球场相当。整个天文台折叠起来以装入运载火箭,并在太空中展开。这种复杂的部署顺序从未在太空望远镜上尝试过,韦伯的惊人工程设计包括许多突破技术界限的创新。韦伯是人类智慧的壮举。该任务历时二十多年,来自 14 个国家和 29 个美国州的数千名科学家、工程师和其他专业人士为此做出了贡献。韦伯望远镜的发射是一个关键时刻,彰显了 NASA 及其合作伙伴欧洲航天局 (ESA) 和加拿大航天局 (CSA) 的奉献精神、创新精神和雄心壮志,但这仅仅是个开始。该天文台在太空中运行的六个月是一个令人兴奋但又令人紧张的时刻,在此期间,数千个部件和序列都必须在距离地球近一百万英里的地方正确地协同工作。当望远镜开始收集数据时,这一阶段达到高潮——这对任务、NASA、美国和全世界来说都是一个真正意义重大的庆典。基本天文学问题推动了韦伯望远镜独特的设计、尖端的能力和无与伦比的红外灵敏度——所有这些都旨在提供宇宙的新视角,并以非凡的科学发现激发我们的想象力。这是我们在了解人类在浩瀚宇宙中的地位方面向前迈出的一大步。
of GaN/p-Si based solar cells N. S. Khairuddin a , M. Z. Mohd Yusoff a,* , H. Hussin b a School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia b School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah阿拉姆(Alam),马来西亚雪兰莪(Selangor),在这项研究中,我们使用PC1D模拟器来证明基于硝酸盐(GAN)的太阳能电池模型的性能分析。已经发现,当GAN底物的层厚度生长时,太阳能电池的效率会降低。这是通过比较GAN和硅底物上的掺杂浓度和层厚度来发现的。随着P掺杂SI层的厚度升高,细胞效率恰好增加。GAN和P -Silicon的最佳掺杂浓度分别为1x10 18 cm -3和1x10 17 cm -3。与其他设计相比,GAN/P-Silicon太阳能电池的效率最高25.26%。(2023年6月21日收到; 2023年9月1日接受)关键字:太阳能电池,甘恩,氮化碳,硅,硅,pc1d1。简介硝酸盐(GAN)设备自然会获得市场份额。gan收入将以75%的累积年增长率扩大。电力电子专家目前面临与电路设计技术,被动组件选择,热管理和实验测试有关的问题,这是由于其高开关速度和操作开关频率[2]。gan合金具有可调的直接间隙,这就是光伏使用它们的原因。用于光电和微电子学中的应用,III-V硝酸盐(如氮化岩(GAN),氮化铝(ALN)和硝酸铝(Innride)及其合金及其合金都特别吸引人。他们的带盖是最初[3]最诱人的地方之一。si还旨在在低温血浆增强化学蒸气沉积(PECVD)方法中作为N型掺杂剂掺入,因为它是高温GAN中的众所周知的供体掺杂剂[4]。由于其直接带隙(例如〜3.4 eV),整个可见光谱中的透射率超过82%,高电子迁移率(〜1,000 cm2/vs)[5] [5],高导热率和出色的化学稳定性和出色的化学稳定性[6],氮化物(GAN)具有出色的光学和电气性能。Ingan材料系统的带隙现在跨越了红外线到紫外线。INGAN材料系统对于光伏应用是有利的,因为它可用于制造第三代设备,例如中型太阳能电池,除了高效的多官方太阳能电池外,由于其直接和宽的带隙范围[7]。氮化物具有有利的光伏特性,例如低有效的载体,高迁移率,高峰值和饱和速度,高吸收系数和辐射耐受性,除了宽带间隙范围[8]。IIII-V硝酸盐技术能够生长高质量的晶体结构并创建光电设备的能力证实了其高效光伏的潜力[9]。上述情况使我们能够控制费米水平显然随着gan厚度的上升而向上移动,并减少传导带最小值(CBM)值和价值最大(VBM)值[10]。压缩应力的松弛和较厚的GAN层的载体浓度增加是依赖厚度依赖性带结构的初步解释[11]。
[3] Huan Zhao; Linghan Zhu;江西li; Vigneshwaran Chandrasekaran;乔恩·凯文·鲍德温(Jon Kevin Baldwin);迈克尔·佩特斯(Michael t Pettes); Andrei Piryatinski;李阳;汉·htoon。操纵近红外量子光生成的层间激子。纳米字母。2023,23,11006-11012。[4] Xiangzhi li;安德鲁·琼斯(Andrew C Jones); Junho Choi; Huan Zhao; Vigneshwaran Chandrasekaran;迈克尔·佩特斯(Michael t Pettes); Andrei Piryatinski; ma rta a tschudin;帕特里克·雷瑟(Patrick Reiser);大卫百老汇。在应变工程WSE2/NIPS3异质结构中,接近诱导的手性量子光生产生。自然材料。2023,22,1311-1316。[5] Huan Zhao;迈克尔·佩特斯(Michael t Pettes); Zheng;汉·htoon。位点对照的电信波长单光子发射器在原子上薄的Mote2中。nat Commun。2021,12,6753。[6] Huan Zhao; Beibei Wang; Fanxin Liu;小对Haozhe Wang; Wei Sun Leong;马克·史蒂文斯(Mark J Stevens); Priya Vashishta; aiichiro nakano;庆。流体流有助于范德华材料的确定性折叠。高级功能材料。2020,30,1908691。[7] Tong Wu†; Huan Zhao†; Fanxin Liu; Jing Guo;汉王。设备的机器学习方法 - 基于随机设备设备的玻尔兹曼机器的电路合作。ARXIV预印ARXIV:1905.04431。2019。[8] Shanyuan Niu†; Huan Zhao†; Yucheng Zhou; Huaixun Huyan;博伊恩赵;江宾;斯蒂芬·B·克罗宁(Stephen B Cronin);汉王; Jayakanth Ravichandran。中波和长波红外线二色性二色性二色性在六角形钙钛矿甲状腺素中。材料的化学。2018,30,4897-4901。[9] Shanyuan Niu†;格雷厄姆·乔†; Huan Zhao†; Yucheng Zhou;托马斯·奥维斯(Thomas Orvis); Huaixun Huyan;贾德·萨尔曼(Jad Salman); Krishnamurthy Mahalingam;布列塔尼·乌尔文(Brittany Urwin);江宾·吴(Jiangbin Wu)巨大的光学各向异性在准尺寸晶体中。nat光子学。2018,12,392。[10] Ivan Esqueda; Huan Zhao;汉王。有效的学习和横杆操作,具有原子薄的2-D材料化合物突触。应用物理学杂志。2018,124,152133。[11] Zhipeng Dong; Huan Zhao;唐·迪马齐奥(Don Dimarzio); Myung-Geun Han; Lihua Zhang;杰西·蒂斯(Jesse Tice);汉王; Jing Guo。由2-D材料启用了原子上的CBRAM:缩放行为和性能限制。电子设备上的IEEE交易。2018,65,4160-4166。[12] Huan Zhao; Zhipeng Dong;他天;唐·迪马尔兹(Don Dimarzi); Myung-Geun Han; Lihua Zhang;小对Fanxin Liu;朗山; Shu-Jen Han。原子上薄的femtojoule候选装置。高级材料。2017,29,1703232。[13] Bolin Liao†; Huan Zhao†; Ebrahim Najafi;小对他天;杰西·蒂斯(Jesse Tice);奥斯汀·J·明尼奇(Austin J Minnich);汉王;艾哈迈德·H·泽尔(Ahmed H Zewail)。黑磷中各向异性光载体动力学的时空成像。纳米字母。2017,17,3675-3680。[14] Huan Zhao†; Yuanrui li;道格拉斯·奥尔伯格(Douglas Ohlberg); Wei Shi; Wei Wu;汉王; ping-heng tan。 单层钼二硫化物纳米纤维具有高光学各向异性。 高级光学材料。 2016,4,756-762。 纳米研究。 2015,8,3651-3661。[14] Huan Zhao†; Yuanrui li;道格拉斯·奥尔伯格(Douglas Ohlberg); Wei Shi; Wei Wu;汉王; ping-heng tan。单层钼二硫化物纳米纤维具有高光学各向异性。高级光学材料。2016,4,756-762。纳米研究。2015,8,3651-3661。[15] Huan Zhao†; Jiangbin Wu†;宗宗; qiushi guo;小王;富兰斯Xia;李阳; Pingheng tan;汉王。在各向异性原子上稀薄的鼻鼻中的层间相互作用。[16] Yichen Jia; Huan Zhao; qiushi guo;小王;汉王;冯米亚。可调节的等离子体 - 声子偏振子中的分层石墨烯 - 甲状腺氮化硼异质结构。acs光子学。2015,2,907-912。[17] Huan Zhao; qiushi guo;富兰斯Xia;汉王。 二维材料用于纳米素化的应用。 纳米素化学。 2015,4,128-142。 [18]小王;亚伦·琼斯(Aaron M Jones);凯尔·塞勒(Kyle L Seyler); vy tran; Yichen Jia; Huan Zhao;汉王;李阳; Xiodong Xu;冯米亚。 单层黑磷中高度各向异性和稳健的激子。 纳米技术。 2015,10,517-521。[17] Huan Zhao; qiushi guo;富兰斯Xia;汉王。二维材料用于纳米素化的应用。纳米素化学。2015,4,128-142。[18]小王;亚伦·琼斯(Aaron M Jones);凯尔·塞勒(Kyle L Seyler); vy tran; Yichen Jia; Huan Zhao;汉王;李阳; Xiodong Xu;冯米亚。单层黑磷中高度各向异性和稳健的激子。纳米技术。2015,10,517-521。