抽象背景:HPSC来源的内皮和造血细胞(ECS和HCS)是组织工程的有趣细胞来源。尽管它们紧密的空间和时间胚胎发育,但当前的HPSC分化方案仅专门用于这些谱系之一。在这项研究中,我们产生了一种可以在两种谱系的体外分化的血红素内皮人群。方法:通过CD144 + - 胚胎体(HPSC-EBS),将两条hESC和一条HIPSC线分化为血红素内皮人群,HPSC-EC和爆炸菌落(HPSC-BC)。HPSC-EC的特征是内皮菌落形成测定,LDL摄取测定,TNF-α的内皮激活,一氧化氮检测和基于基质的管子的形成。造血集落形成细胞分析是从HPSC-BCS进行的。有趣的是,我们确定了以CD144和CD45的表达为特征的HPSC-BC种群。HPSC-EC和HPSC-BC;在小鼠背侧皮肤折室上的缺血性组织损伤模型和造血重建的HPSC-ECS和HPSC-EB-CD144 +的免疫抑制小鼠中,体内实验已通过缺血性组织损伤模型实现。进行转录组分析以确认hESC衍生细胞群体的内皮和造血认同,通过将它们与未分化的hESC进行比较(例如,HPSC-EC与HPSC-EB-CD144 +),并针对人类胚胎肝(EL)内皮,血红蛋白和造血细胞亚群。结果:在无血清条件下进行84小时HPSC-EBS形成后,获得了血红素内皮种群,并根据CD144表达分离。在人间注射HPSC-EB-CD144 +的hPSC-EB-CD144 +有助于免疫缺陷小鼠中CD45 +人类细胞的一代,这表明HPSC-EB-CD144 +内血液发电性ECS存在。HPSC-EB-CD144 +的内皮分化在体外的功能性EC> 95%。HPSC-EC参与了小鼠缺血模型中体内新容器的形成。在体外,HPSC-EB-CD144 +的造血分化产生了> 90%CD43 + HPSC-BC的中间群体,能够产生髓样和红系菌落。最后,转录组分析分别证实了HPSC-EB-CD144 +,HPSC-ECS和HPSC-BC的血液层,内皮和造血认同,以及
氧电催化对于先进的能源技术至关重要,但由于缺乏地球上含量丰富的高活性催化剂,仍然存在极大的挑战。在此,通过纳米结构和缺陷工程,我们通过将天然存在但通常不活跃的赤铁矿 (Ht) 转化为具有氧空位 (Ov-Hm) 的赤铁矿 (Hm) 来增强其催化性能,使其成为一种高效的氧气析出反应 (OER) 催化剂,甚至优于最先进的催化剂 IrO 2 /C,在 250 mV 的较低过电位下电流密度为 10 mA/cm 2。第一性原理计算表明,Hm 表面上的降维和缺陷会局部改变吸附位点周围的电荷,从而降低 OER 过程中的势垒。我们的实验和理论见解为从天然存在且丰富的材料中开发用于 OER 应用的高活性电催化剂提供了一条有希望的途径。
神经肽甘丙肽是所谓甘丙肽系统的重要成员。尽管自其发现以来已经过去了 40 年(Tatemoto 等人,1983 年),但仍有许多生物过程中甘丙肽的作用尚未完全了解(Jiang 和 Zheng,2022 年;Zhu 等人,2022 年)。甘丙肽作为神经递质的多效性作用包括参与调节睡眠和觉醒过程、行为过程、焦虑、学习和记忆、疼痛和伤害感受以及其他过程。甘丙肽系统还被发现在许多外周器官功能中发挥重要作用,特别是在心脏和心血管系统、胰腺和胃肠系统以及骨骼、结缔组织和皮肤中(Lang 等人,2015 年;Š ípková 等人,2017 年)。甘丙肽的多种作用不仅在典型的生理条件下明显,而且在病理环境中也很明显(Gopalakrishnan 等人,2021 年)。甘丙肽介导的信号传导的多效性和复杂性基于三种不同的 G 蛋白偶联受体(GPCR)的存在,即 GalR1、GalR2 和 GalR3,它们通过不同的途径传递生物信号(Jiang 和 Zheng,2022 年)。此外,多年来发现了与甘丙肽分子具有部分同源性的新配体:GALP(甘丙肽样肽)和阿拉林。根据目前的知识,只有 GALP 能够激活甘丙肽受体,即 GalR2/GalR3,而阿拉林却不能,尽管它们具有部分同源性。阿拉林的特定受体尚不清楚(Fang 等人,2020 年;Abebe 等人,2022 年)。甘丙肽系统的最新成员是 spexin,它是一种具有多效性功能的小肽,可以激活人类 GalR2 和 GalR3 受体(Behrooz 等人,2020 年)。有多项研究描述了甘丙肽系统在代谢、食物摄入和肥胖中的重要作用。甘丙肽通过刺激 GalR1 在下丘脑中的活动会导致脂肪摄入增加。此外,它还有刺激正反馈的能力,从而导致过量脂肪摄入和肥胖(Marcos 和 Coveñas,2021 年)。这种失调可能会导致葡萄糖不耐受,从而导致 2 型糖尿病 (T2DM) 和代谢综合征(Fang 等人,2012 年)。类似地,脂肪摄入和摄食行为也可以通过 GALP 的活性进行改变 ( Takenoya 等人,2018 年)。最后,还证实了 spexin 在调节食物摄入、饱腹感以及随后的肥胖风险方面的作用 ( Behrooz 等人,2020 年)。Spexin 还被证明可以在体内和体外减轻高脂饮食 (HFD) 诱发的小鼠肝脂肪变性 ( Jasmine 等人,2016 年)。
摘要:类胡萝卜素是一种有价值的色素,天然存在于所有光合植物和微藻以及某些真菌、细菌和古细菌中。绿色微藻形成了复杂的类胡萝卜素结构,适合高效采光和防光,并通过内源性 2-C-甲基-D-赤藓糖醇 4-磷酸 (MEP) 途径的强大功能具有强大的类胡萝卜素生产能力。先前的研究建立了成功的基因组编辑,并诱导了莱茵衣藻细胞类胡萝卜素含量的显著变化。本研究采用定制的类胡萝卜素途径来工程化生物生产有价值的酮类胡萝卜素虾青素。番茄红素 ε-环化酶 (LCYE) 的功能性敲除和基于非同源末端连接 (NHEJ) 的供体 DNA 在靶位点的整合会抑制 α-胡萝卜素的积累,从而抑制莱茵衣藻中丰富的类胡萝卜素叶黄素和氯黄素的积累,而不会改变细胞适应性。基于 PCR 的筛选表明,96 个再生候选系中有 4 个携带供体 DNA 的 (部分) 整合,并且 β-胡萝卜素以及衍生类胡萝卜素含量增加。与亲本菌株 UVM4 相比,Cr BKT、Pa crtB 和 Cr CHYB 的迭代过表达导致突变体 ∆ LCYE#3 (1.8 mg/L) 中的虾青素积累增加了 2.3 倍,这表明基因组编辑在设计用于虾青素生物生产的绿色细胞工厂方面具有潜力。
摘要 本研究旨在设计计算机引导RNA(sgRNA),用于CRISPR/Cas9介导的红薯(Ipomoea batatas L.)八氢番茄红素脱氢酶(PDS)基因敲除。IbPDS基因编码区序列长1791个碱基对(bp),相当于572个氨基酸。将IbPDS基因的氨基酸序列与其他邻近植物物种的同源序列进行比较,结果显示,它与Ipomoea triloba和Ipomoea nil的PDS相似性很高,分别为98.60%和97.73%。 CRISPR RGEN Tools 为 IbPDS 基因提供了 113 个结果,筛选出 24 个,并选择了三个 sgRNA 序列用于设计基因编辑载体,它们是 sgRNA 1 (5'-AC- CTCATCAGTCACCCTGTCNGG-3')、sgRNA 2 (5'- CCTCCAGCAGCAGTATTGGTTGGTTTGNGG -3') 和 sgRNA 3 (5'- CTGAACTCTCCTGGTTGGTTGTTNGG -3')。所选 sgRNA 的预测二级结构为靶基因的基因编辑提供了有效的 sgRNA 结构。用于 CRISPR/Cas9 介导的 IbPDS 基因敲除的 PMH-Cas9- 3xsgRNA 载体是使用三个 sgRNA 序列和一个潮霉素抗性标记在计算机上设计的。
在花生中,使用子叶节外植体在 cv. ICGV 15083 中进行农杆菌介导的转化。总共 250 个外植体与 CRISPR/Cas9 构建体共培养,结果 80 个外植体在芽起始培养基下 30-40 天内产生多个芽。分离产生多个芽的外植体,并在芽伸长培养基中每 10-15 天进行一次卡那霉素选择(125 mg/L)继代培养。总共 70 个芽用 Cas9 和 NptII 基因特异性引物进行测试。其中,50 个(约 70%)对 Cas9 和 NptII 基因均呈阳性(图 3)。在这个组中,25 个芽(约 25%)表现出不同程度的白化表型(图 4,表 2)。白化芽在再生后三个月内无法存活。一些
当疟原虫 (P.) spp. 寄生虫侵入并溶解红细胞 (RBC) 时,就会出现重症疟疾,从而产生细胞外血红蛋白 (HB),并从中释放出不稳定血红素。在这里,我们测试了通过结合珠蛋白 (HP) 和/或血红素结合蛋白 (HPX) 分别清除细胞外 HB 和/或不稳定血红素是否会对抗重症疟疾的发病机制。我们发现,循环不稳定血红素是儿童重症恶性疟原虫疟疾大脑和非大脑表现的独立危险因素。不稳定血红素与循环 HP 和 HPX 呈负相关,但后者不是重症恶性疟原虫疟疾的危险因素。小鼠基因性 Hp 和/或 Hpx 缺失导致疟原虫感染后不稳定血红素在血浆和肾脏中积聚。这与老年小鼠死亡率和急性肾损伤 (AKI) 发生率较高有关,但与成年感染疟原虫的小鼠无关,血红素和 HPX 与恶性疟原虫疟疾 AKI 血清学标志物呈负相关,证实了这一点。总之,HP 和 HPX 以年龄依赖的方式发挥作用,防止小鼠和人类出现严重的疟疾症状。
出生后第一周未结合的胆红素(UB)水平与新生儿缺氧 - 缺血性脑病(HIE)的结局有关。HIE,脑磁共振成像(MRI),听力结果和神经发育结局≥1年的临床SARNAT分期用于将82名HIE患者的UB相关联。初始UB水平与乳酸水平显着相关。在I期(10.13±4.03 mg/dl,n = 34)中,峰值UB高(p <0.001),高于II阶段和III(6.11±2.88 mg/dl,n = 48)。在接受体温过低治疗的48例患者中,较高的峰值UB显着(P <0.001)与不明显的脑MRI扫描和不明显的神经发育结局相关。峰值UB在没有癫痫发作的患者中高(p = 0.015),直到1岁(6.63±2.91 mg/dl)高于癫痫发作的患者(4.17±1.77 mg/dl)。关于听力结果,有和没有听力损失的患者之间没有显着差异。出生后第一周的UB水平是临床分期,MRI发现,1岁之前出院后的癫痫发作的重要生物标志物以及≥1岁的神经发育结果。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年11月13日。 https://doi.org/10.1101/2023.08.09.552716 doi:Biorxiv Preprint
范围:甜菜红素色素因其生物活性和抗炎特性而日益受到重视,尽管缺乏研究来证明单个甜菜红素的贡献。本文旨在比较四种主要甜菜红素对炎症和细胞保护标志物的影响,并强调两个主要亚类:甜菜红素和甜菜黄素之间潜在的结构相关关系。方法和结果:小鼠 RAW 264.7 巨噬细胞在与浓度为 1 至 100 µ M 的甜菜红素 (甜菜红素、新甜菜红素) 和甜菜黄素 (印度黄素、淡黄素 I) 孵育后,受到细菌脂多糖的刺激。所有甜菜红素均抑制促炎标志物 IL-6、IL-1 𝜷 、iNOS 和 COX-2 的表达,且甜菜红素的效果比甜菜黄素更强。相反,HO-1 和 gGCS 表现出混合且仅适度的诱导作用,而甜菜红素的效果更为突出。虽然所有甜菜红素都抑制了超氧化物生成酶 NADPH 氧化酶 2 (NOX-2) 的 mRNA 水平,但只有甜菜红素能够抵消过氧化氢诱导的活性氧 (ROS) 生成,这与它们的自由基清除潜力一致。此外,甜菜红素具有促氧化特性,使 ROS 生成量超过过氧化氢刺激。结论:总之,所有甜菜红素都表现出抗炎特性,尽管只有甜菜红素表现出自由基清除能力,这表明在氧化应激条件下可能存在不同的反应,这需要进一步研究。