1.人工神经网络 (ANN) 简介 2.神经网络中的学习、实施过程、预测和与实际结果的比较以及从数据库中提取知识。3.合金成分对钛合金 β 转变温度影响的建模。4.具有不同微观结构的 Ti-6Al-4V α-β 合金的热变形行为。5.中碳钢中成分-热处理-力学性能关系的建模。6.钢中马氏体开始温度的成分依赖性估计 7.通过人工神经网络模型分析 Inconel 高温合金在电火花加工过程中的可加工性 8.预测静电纺丝工艺参数与纳米纤维直径之间的关系 9.建模金属基复合材料的物理和机械性能 10.人工神经网络的预期未来、可用于建模的资源和开放数据源
纤维因其优异的拉伸性、透气性和高孔隙率而在诸多领域具有广泛的应用前景。人们已经开发出许多方法来使用各种材料来生产合成纤维,其中,静电纺丝是一种广泛使用且有效的生产微纳米级纤维(纤维直径范围从 2 纳米到几微米)的方法[5]。除静电纺丝外,大多数其他传统的纤维生产方法,如湿纺和干纺、拖曳纺丝、凝胶纺丝和三维 (3D) 打印,都仅依靠机械拉伸或剪切应力来拉伸和变细纤维射流;因此,它们通常很难在不导致纤维断裂的情况下生产出纤维直径小于 10 毫米的超薄纤维[6]。静电纺丝利用强静电力将聚合物溶液或熔体拉伸成细射流,最终形成微/纳米纤维沉积。这种现象最早在一个多世纪前被发现和描述 [ 7 ],但直到 20 世纪初,“静电纺丝”一词才正式提出 [ 8 ]。从那时起,关于这种用途广泛且简单的纤维生产技术的研究一直在显着增长 [ 9 ]。随着材料科学和纳米技术的最新发展,新材料已与静电纺丝技术相结合,例如导电材料、能量产生材料以及生物相容性和生物活性材料。利用这些新材料功能化的电纺微/纳米纤维不仅保留了超薄纤维的物理优点,例如高长宽比、柔韧性、方向性和高孔隙率,而且还开辟了新颖的纤维和纺织设备配置和应用。例如,压电聚合物的使用使一系列本质上灵活和透明的能量收集器和自供电传感器成为可能[10,11]。用聚合物和金属或陶瓷制成的复合材料纤维在新型传感和光电设备中显示出良好的应用潜力[12,13]。同时,这些新兴应用要求对电纺纤维的形貌和图案进行更精确、更方便和定制化的控制。因此,人们努力改进和调整静电纺丝装置和工作条件,并将纤维纺丝与其他先进加工技术(如 3D 打印和微流体)相结合。本章旨在全面描述静电纺丝的最新创新和技术进步。为了让不熟悉静电纺丝的读者有效地阅读本章,我们在开头简要介绍了静电纺丝的物理原理和基本装置设计,然后讨论了
摘要由于其高生产成本高的特异性刚度和强度,短纤维增强塑料(SFRP)取代了越来越常见的材料,例如技术设备中的钢或铝。即使SFRP在宏观水平上均匀地作为材料起作用,由于纤维形态(方向,长度和体积含量),在微观水平上形成各向异性。结果,由SFRP制成的组件在焊接线处具有较低的强度和刚度,或者厚度的差异可能导致组件故障。因此,SFRP中纤维形态的知识对于组件设计至关重要。确定纤维形态的一种方法是计算机断层扫描(CT)。由于几微米(〜7-20 µm)的纤维直径较小,因此由于必要的高放大倍率,层析成像的视野降低了。因此,标准CT系统只能用于检查具有较大体积的组件的成分和纤维形态的代表性,破坏性的样品,不能非破坏性地分析。在这项工作中,研究了一种方法,其中将少量衰减的示踪剂纤维添加到塑料中的增强纤维中,从而增加了对比度与噪声比率。这允许减少几何放大倍率,并可以实现更大的视野。
压降或高渗透性以允许自由呼吸。用作空气过滤膜的使用非织造膜以比传统的空气过滤器低的成本为这些特性。10此外,静电纺丝过程可实现连续的纤维产生,从而导致很长的纤维,并防止它们流动。13静电纺丝还允许在宽范围内定制EFM的纤维直径和孔径,达到三个数量级。10许多不同的聚合物已被用于成功生产用于空气过滤的EFM,包括聚(乙烯基二氟乙烯)(PVDF),聚丙烯硝基硝基烯(PAN)和聚酰胺(PA)。pa和pan对于生产需要在恶劣环境中使用的强大过滤器特别有用。24 - 26 PVDF因其疏水性而被选择。27,28用于空气过滤的电纺膜通常是复合材料,在该复合材料中,非织造物被沉积在多孔底物的顶部,以增强电纺非织造的机械稳定性。29在另一个由一个组件制成的自由膜上,可以在更简单的过程中制成,这对大规模生产更具吸引力。10此外,由于可以溶解使用的过滤器,并且可以再次用于电旋转的解决方案,因此可以更容易地将材料回收。30,31
摘要Öz在这项研究中,细菌纤维素(BC)是从komagataeibacter xylinus s4获得的,并详细表征。确定了卑诗省生产的各种碳源和培养基,不同的pH条件,不同的pH条件,孵育温度,表面积/体积比和孵育持续时间。考虑到碳的类型,从高到低的BC生产量被实现为蔗糖,果糖,甘露醇,木糖,阿拉伯糖和乳糖。通过组合M1A05P5肉汤,30°C,1.06 cm -1表面积/体积比,pH 3.5和21天,可以实现最高的BC量(1.303 g/L)。根据扫描电子显微镜(SEM)分析,纤维素原纤维直径为pH 3.5时为34.87-45.97 nm,在M1A05P5中的pH 6.5时为29.71-102.3 nm。此外,TGA分析也表明,在去除50°C和150°C之间的水步骤中,BC的重量损失,以及在215°C和228°C之间初始化的降解步骤。最后,在27-137°C的温度尺度上确定BC样品的电导率值。观察到电导率取决于温度,并且随着温度的增加,电导率成倍增加。总而言之,K。xylinus S4的纤维素通常显示出半导体的行为。
先前使用氢水合物通过化学还原获得的RGO的抽象功能化是通过使用静电纺丝技术将其形态转换为纳米纤维的,并将PVA用作聚合物基质。然后使用傅立叶变换红色(FTIR)光谱,扫描电子显微镜(SEM)和UV-VIS分光光度计表征了已形成的RGO纳米纤维。FTIR光谱证实了纳米纤维中C组和C = O组的存在。sem显示了纳米纤维形态的变化,这标志着纤维直径的增加,而空心纤维变得更亮。此外,通过UV-VIS分光光度计证实了RGO浓度对纳米纤维光学特性的影响。根据此特征,由于RGO浓度升高,RGO/PVA纳米纤维的吸光度降低。通过复杂的折射率和介电常数研究了RGO的光学性质的细节,然后使用Kramers-Kronig转换来计算复杂的折射率和复杂的介电常数。从数据中,RGO/PVA纳米纤维的光学性质表明RGO/PVA纳米纤维可以用作有机太阳能电池设备的透明电极。关键字:减少石墨烯氧化石墨烯,纳米纤维,静电纺丝,kramers-kronig,
融化电动制品(MEW)是一种高分辨率添加剂制造技术,可以平衡多个参数变量,以达到稳定的制造过程。在这里使用高分辨率的摄像机视觉在不同的电场中使用高分辨率的摄像头视觉来强调这种平衡的更好理解。补充此视觉信息是以精确点获得的光纤直径测量值,从而允许与电气射流性质的相关性。通过机器视觉系统进行了监测和分析的两个过程签名 - 射流角度和第一次泰勒锥区域,而直径测量的SEM成像则与实时信息相关。此信息反过来允许检测和校正纤维脉冲,以便在收集器上精确放置喷射,以及对纤维直径的进程评估。改进的过程控制用于成功制造可折叠的MEW管;需要出色准确性和打印稳定性的结构。使用60°和300层的精确绕组角,产生的12毫米厚的管状结构具有与机械超材料相关的弹性快速不稳定性。这项研究提供了MEW中纤维脉冲发生的详细分析,并强调了对泰勒锥体积的实时监测的重要性,以更好地理解,控制,控制和预测印刷不稳定性。
呼吸机诱导的隔膜功能障碍(VIDD)是需要机械通气(MV)和神经肌肉阻滞(NMBA)的重症监护单元(ICU)治疗的常见续集。它的特征是隔膜无力,延长的呼吸器断奶和不良后果。解离性糖皮质激素(例如Vamorolone,VBP-15)和伴侣共同诱导剂(例如BGP-15)先前在ICU-RAT模型中显示出积极影响。在肢体肌肉疾病肌病中,优先肌球蛋白损失占上风,而肌纤维蛋白翻译后修饰在VIDD中更为主导。尚不清楚特定力的明显下降(归一化为横截面区域)是否是收缩性信号变化的纯粹结果,或者隔膜弱点是否也通过肌球的细胞体系结构来迅速发展,以及vbp-15或BGP-15或BGP-15的范围,通过肌发光的细胞体系结构来实现结构性相关。为了解决这些问题,我们进行了无标签的多光子第二次谐波产生(SHG)成像,然后在单个diaphragm肌肉肌中进行定量形态计量学,从健康大鼠进行MV + NMBA的五天或10天的健康大鼠,以模拟ICU治疗而无需混淆病理(例如Sepsis)。大鼠每天接受泼尼松龙,VBP-15,BGP-15或无治疗。肌球蛋白-II SHG信号强度,纤维直径(FD)以及肌纤维角平行性的参数
纤维素是多糖之一,是植物细胞壁的主要成分。在各种类型的纤维素中,纤维直径为4至100 nm,长度为几μM,长宽比为100或更多的纤维素的纤维素称为纤维素纳米纤维(CNF),并吸引了作为领先的生物量材料的注意力。除了CNF的轻重量和高强度外,它们还具有其他出色的功能,包括高气势屏障特性,吸附和透明度以及作为植物来源的材料,生产和处置的环境影响很小。将来,预计将使用汽车组件,电子材料,包装材料和其他应用。纳米纤维素材料的表面可以用硫酸盐基团和羧基等表面官能团修饰,以添加各种功能。在水中,这些表面官能团的离子部分充当带电组,从而提高了水分性。通常,电导滴定方法已用于对这些表面充电组的定量分析。尽管这是一种通用技术,但它存在许多问题,包括需要大量的样品材料(几百毫克)样品材料,但测量时间很长,需要视觉确认,并且结果是根据分析师而差异的。因此,不取决于单个分析师的技能来解决这些问题的简单方法。该实验是在新月大学的Jun Araki教授的合作中进行的。本文使用Shimadzu Ultraviolet-Visible Light(UV-VIS)分光光度计介绍了甲苯胺蓝O(TBO)吸附方法对表面官能团进行定量分析的示例。
随着对聚合物复合材料的研究,下一代吸附,分离和填充材料的发展正在增长。在这项研究中,壳聚糖(CS)和聚乙烯氧化物(PEO)纳米纤维的新型混合物在钛(TI)涂层的聚乙烯二甲甲甲甲酸酯(PET)tere-苯甲酸酯(PET)田径膜(TMS)上是通过glutarallaldey sepers the Vopersention the Vopersention the Vopersention the Vopersention the vope sepers的电气传播。交联。制备的复合钛涂层轨道蚀刻的纳米纤维膜(TTM-CPNF)的特征是傅立叶变换Infra-Red(FTIR),水接触角和扫描电子显微镜(SEM)分析。平均纤维直径为156.55 nm的光滑和均匀的CS纳米纤维是由从92 wt制备的70/30 CS/PEO混合溶液中产生的。%乙酸和静电弹性在15 cm针上,以0.5 ml/h流量的速率和TTM-CPNF上的30 kV施加的电压。短(15分钟)和长(72 h) - 期 - 溶解度测试表明,在3小时后,交联的纳米纤维在酸性(ph¼3),碱性(pH¼13)和中性(pH¼7)溶液中稳定。基于淡水甲壳类动物麦克尼亚(Daphnia)的低死亡率,交联的TTM-CPNF材料是生物相容性的。被证明是由电源纳米纤维和TMS组成的复合膜被证明是生物相容性的,因此可能适用于在水处理中的双重吸附效率系统等多种应用。©2020 Elsevier Ltd.保留所有权利。