g)校园 - 栗子山10,030 15,375 20,060 30,750 h)校园 - 校园角9,780 15,125 19,560 30,250 I)校外村庄 - 大学村(单身)9,780 15,125 19,125 19,560 30,250 J)1330 1330 1330 1330 8,60 8,60 8. 27,750 K)在校园外 - Unive Corner Apt。(单个)9,780 15,125 19,560 30,250 L)在校园 - 大学角落Apt。(双)8,530 13,875 17,060 27,750 m)距离校园 - 罗素街旅馆(单身)9,780 15,125 19,560 30,250 N)校园 - 罗素街旅馆(Russell Street Inn) - 罗素街旅馆(Double)8,530 13,875 13,875 17,060 27,750 27,750 o 30,750 p)在校园外-Rutledge insuites lovell 10,030 15,375 20,060 30,750
奎那那可再生燃料 (KRF) 项目是一项在现有的 BP 奎那那炼油厂建造和运营生物燃料加工厂的提案。该提案位于奎那那工业区 (KIA),距离西澳大利亚珀斯以南约 30 公里(图 1)。该提案的提议者是 BP 炼油厂(奎那那)有限公司 (BP)。该提案旨在建立生物炼油厂,加工植物油、动物脂肪和其他生物废物产品以生产生物燃料。现有的碳氢化合物精炼和加工基础设施将被重新利用,并与新的基础设施相结合,以促进该提案的实施。该提案位于奎那那工业区现有的 BP 奎那那炼油厂边界内,将使用现有的受干扰足迹。该提案不需要清除植被(图 2)。EPA 认为,在现有工业区选址该提案以及对现有设施的重新利用符合良好的环境实践和 1986 年环境保护法(该法案)的目标。
我们的看法:Narayana Hrudayalaya Ltd (NHL) 在印度拥有 45 家医疗机构网络,包括 18 家自有/运营医院、1 家管理医院、4 家心脏中心和 21 家初级保健机构,共计 6,164 张床位。该公司在印度拥有稳固的影响力和强大的品牌知名度,尤其是在两个地区(班加罗尔和卡纳塔克邦)。旗舰单位的强劲表现与新医院的稳步改善相得益彰。入住率和客流量的提高,加上 ARPOB 的增加,导致新医院的亏损缩小。为了巩固其在印度的地位,该公司正在优先考虑现有设施的瓶颈消除和棕地扩建。未来两年,印度不会有显著的床位增加。其首要任务是增加现有医院单位的棕地容量。新医院的稳定收入、付款人组合的变化、高端手术比例的增加以及高床位周转率(较低的 ALOS)是中期的关键驱动因素。 NHL 愿意通过在核心区域新建设施以及非直接投资机会来追求战略增长。Narayana 拥有并经营着 Health City Cayman Islands (HCCI),这是一家拥有 110 张床位的设施,位于加勒比海的开曼群岛。由于靠近机场和几个主要住宅区,卡马纳湾的新医院可能会扩大其对国际和本地患者的覆盖范围。这将使 NHL 能够满足当地居民的需求,他们通常会出国接受高端医疗。新设施将补充现有设施,更多地关注日间护理、短期住院但小众的肿瘤护理类别,而现有设施将继续提供三级和四级护理。24 财年的资本支出指导为 114 亿卢比,其中 40 亿卢比发生在 24 财年上半年。开曼群岛新投入使用的放射肿瘤科大楼取得了显著的进展。开曼群岛一家新的多专科医院有望在 2025 财年第一季度实现商业化。我们于 2023 年 9 月 15 日发布了一份关于 Narayana 的报告,其 CMP 为 1092 卢比,基本目标为 1195 卢比,牛市目标为 2-3 季度的 1265 卢比(链接)。该股在短短 2 个月内就实现了这两个目标。鉴于上半年的强劲业绩和对该行业的良好前景,我们发布了该股的股票更新说明。
1. 中国对新能源技术的追求中国的投资——不仅在新能源技术的研发上,而且特别是在这些技术的制造能力上——长期以来一直是中国国内经济定位于关键新兴工业领域的广泛战略的一部分。从 21 世纪初的风能行业开始,到 2009 年金融危机后的太阳能行业,以及最近的电动汽车和电池储能行业,中国中央政府一直支持新能源技术,以结合气候和经济目标并创建出口就绪的工业部门。中国现在在通过降低电力和交通运输部门的碳排放来解决气候危机最需要的技术的大规模生产方面处于世界领先地位。这些新能源技术包括风力涡轮机、太阳能电池板、电动汽车和电池。自 2001 年加入世界贸易组织以来,中国在全球太阳能光伏发电中的份额迅速增长,从不到 1% 跃升至全球太阳能电池板的 60% 以上。中国是世界上最大的电动汽车生产国之一;中国生产的风力涡轮机占全球总产量的三分之一以上,为全球风力涡轮机装置生产的零部件也占了很大一部分。中国拥有全球三分之二以上的电动汽车和储能所需锂离子电池产能。中国与欧盟现在也是世界上最大的电动汽车市场之一。1 在很大程度上,由于中国在绿色技术领域的制造业进行了前所未有的投资,清洁能源技术的成本大幅下降。自 2009 年以来,全球风力涡轮机和太阳能电池板的价格分别下降了 69% 和 88%,使得这些产品的价格下降。
使它们适合于纳米素质,纳米传感,纳米电子等学科等。[5]。有许多类别的纳米线,根据其组成,结构和特性进行分组。•半导体纳米线:这些是使用硅,硝酸盐或氧化锌等半导体材料生产的,并在电子和光子学中广泛使用,用于半导体,太阳能电池,太阳能电池和光发射diodes(LEDS)等。[6]。•金属纳米线:这些由金,银或铜等金属元素组成,并用于导电电极/膜等应用中,作为化学过程的催化剂等。[7]。•氧化物纳米线:这些纳米线是使用金属氧化物(如二氧化钛或氧化铁)产生的,并用作传感器,催化剂和基于能量的储存电子[8]。•碳纳米管:具有类似于纳米线的特性的空心纳米结构。他们在电子,材料科学和生物医学工程中有应用[9]。•混合纳米线:这些由不同的
80 ns 指令周期时间 544 字片上数据 RAM 4K 字片上安全程序 EPROM (TMS320E25) 4K 字片上程序 ROM (TMS320C25) 128K 字数据/程序空间 32 位 ALU/累加器 16 16 位乘法器,乘积为 32 位 用于数据/程序管理的块移动 重复指令以有效利用程序空间 用于直接编解码器接口的串行端口 用于同步多处理器配置的同步输入 用于与慢速片外存储器/外设通信的等待状态 用于控制操作的片上定时器 单 5V 电源 封装:68 引脚 PGA、PLCC 和 CER-QUAD 用于 EPROM 编程的 68 至 28 引脚转换适配器插座 提供商用和军用版本 NMOS 技术: — TMS32020 200 纳秒周期时间 . . . . . . . . CMOS 技术: — TMS320C25 100 纳秒周期时间 . . . . . . . . — TMS320E25 100 纳秒周期时间 . . . . . . . . — TMS320C25-50 80 纳秒周期时间 . . . . .
� 高性能浮点数字信号处理器 (DSP) – TMS320C30-50 (5 V) 40 纳秒指令周期时间 275 MOPS、50 MFLOPS、25 MIPS – TMS320C30-40 (5 V) 50 纳秒指令周期时间 220 MOPS、40 MFLOPS、20 MIPS – TMS320C30-33 (5 V) 60 纳秒指令周期时间 183.3 MOPS、33.3 MFLOPS、16.7 MIPS – TMS320C30-27 (5 V) 74 纳秒指令周期时间 148.5 MOPS、27 MFLOPS、13.5 MIPS � 32 位高性能 CPU � 16/32 位整数和 32/40 位浮点运算 � 32 位指令字,24 位地址 � 两个 1K × 32 位单周期双访问片上 RAM 块 � 一个 4K × 32 位单周期双访问片上 ROM 块 � 片上存储器映射外设: – 两个串行端口 – 两个 32 位计时器 – 单通道直接存储器访问 (DMA) 协处理器,用于并发 I/O 和 CPU 操作
A. Goffin、J. Griff-McMahon、I. Larkin 和 HM Milchberg * 马里兰大学电子与应用物理研究所,马里兰州帕克分校,20742,美国 *milch@umd.edu 大气气溶胶(例如雾中的水滴)会通过散射和吸收干扰激光传播。飞秒光学细丝已被证明可以清除雾区,从而改善后续脉冲的传输。但详细的除雾机制尚未确定。在这里,我们直接测量和模拟半径约为 5 μm 的水滴(典型的雾)在飞秒细丝特有的光学和声学相互作用影响下的动态情况。我们发现,对于由准直近红外飞秒脉冲崩溃产生的细丝,主要的液滴清除机制是激光光学破碎。对于此类细丝,由细丝能量沉积在空气中发射的单周期声波不会影响液滴,也不会引起可忽略的横向位移,因此对雾的清除作用也微乎其微。只有当非细丝脉冲的聚焦程度很高时,局部能量沉积远远超过细丝,声波才会显著取代气溶胶。
摘要:在本文中,使用两个新的第二代电流输送机(CCIIS)的新变体(即电流输送机cascaded Transcadudcative Amplifier(CCCTA)和Extraf-X电流传送器转换器(Expla)Contractor Transcta(Excct and-Excct),使用了两种新变体,可以实现改良的单输入 - 型 - 型号(SIMO)电流模式生物模式的阴影普遍过滤器(SUF)。由CCCTA组成的非阴影通用滤波器(NSUF)的低通和传递输出通过使用一个Ex-CCCTA的两个放大器的反馈路径来实现所提出的SUF。它是无电的,仅利用两个接地电容器。同时获得了SUF的所有五个标准响应,例如低通(LP),高通(HP),带通(BP),带否(BR)和所有Pass(AP)。SUF比NSUF的主要优点是cccta和ex-cccta的偏置电流的极频率(ωO)和质量因子(Q o)的正交调整。由于适当的输入和输出阻抗,它适用于完全覆盖性。此外,它简化了集成的电路实现,因为所有电容器都是接地的,不需要电阻。它没有任何组件匹配的约束,并且消耗了4.1MW的功率。使用Cadence Virtuoso在TSMC技术中验证了理论结果。
任何构建相干量子硬件的尝试都会遭到环境的无情有害影响。为了对抗它,当今所有新兴的量子计算机都必须冷却到低温。超导量子电路需要稀释制冷机来消除热噪声1、2,离子阱处理器则需要冷却到10K以下以减少与杂散气体分子的碰撞3。这种冷却需求给量子信息处理的许多潜在应用带来了问题;它大大降低了便携式设备的前景,并严重影响了作为通信网络中继器和路由器大规模部署的成本和实用性。即使是采用单点缺陷(例如色心或稀土杂质)的光路也需要低温来减少热线展宽4-6。采用探测器作为唯一非线性元件的线性光学方案也是如此(在这种情况下是为了避免因低效检测而产生的开销)7、8。目前,只有少数平台似乎具有在室温和大气压下进行量子处理的潜力9-12。我们探索采用体光学非线性的光子电路,因为它们的非线性元件特别有前途。体非线性元件不仅不受热激发,而且由于其尺寸,受热展宽的影响较小。直到最近,实现具有体非线性的量子装置的可能性似乎还很遥远,这既是由于这些非线性的弱点,也是由于波包畸变的问题13-18。材料非线性有效强度的实质性进展、超约束腔的引入19-21以及波包畸变的相对简单的解决方案22-24改变了这种前景。实现非线性光子量子电路的物理技术并不是实现室温量子逻辑的唯一挑战。从实用性角度来看,必须使用最强的可用非线性、领先阶 χ (2) 非线性磁化率来实现这种逻辑,并且为了实现高效的室温操作,逻辑和纠错电路应避免测量或前馈控制。使用光子进行信息处理有两种基本方法。第一种是使用单轨或双轨编码,其中每种模式包含的光子不超过一个 25 。虽然这种方法的优点是可以使用完善的量子位模型的所有电路构造,但即使是为了纠正单个光子的丢失,也会导致电路复杂化。用于此目的的最小代码使用五种模式(双轨编码为十种)26、27。虽然针对五量子比特代码的最小电路的研究很少,但从七量子比特 Steane 代码的电路来看,我们估计它至少需要 9 个额外模式和 30 个以上的 CNOT 门。另一种方法是使用每个模式使用多个光子的玻色子码,但在这种情况下,实现纠错所需的门和电路还远未明朗,更不用说如何实现这些具有 χ (2) 相互作用的门了。虽然已经阐明了玻色子码的显式纠错程序 28 – 32 ,但它们都涉及非拆除或光子数分辨测量。目前尚不清楚如何构造所需的幺正多光子操作来取代仅使用 χ (2) 非线性的这种测量,或者这样做的复杂性。迄今为止,唯一明确构建的用于校正玻色子码的幺正电路是使用理想化 χ (3) 介质 33 的 40 层神经网络。在这里,我们提出了一种仅使用固定 χ (2) 非线性在多模多光子态上实现全幺正(因而是室温)量子逻辑的方法。该范式以具有时间相关驱动的单个三重谐振腔作为其基本模块,大大降低了实现所需的物理电路的复杂性