• 湿热(+40°C,湿度 93%)16 小时(NF EN 60068-2-78) • 低湿热(+50°C),16 小时(NF EN 60068-2-2) • 热冲击:-36°C 和 +43°C 下 20 小时循环(NF EN 60068-2-14) • 极端温度:-20°C 和 +70°C,4 小时(NF EN 60068-2-1 和 NF EN 60068-2-2) • 低温:-36°C,16 小时(NF EN 60068-2-1) • 室温下连续飞行 92 小时,无机械卡住 • 从 1 米高处跌落到混凝土上 18 次(每侧 3 次)后仍能正常工作
他于 2006 年获得缅因海事学院海洋工程理学学士学位。毕业后直至 2018 年,Barnum 先生担任悬挂美国和马绍尔群岛国旗的商船的工程官,包括成品油轮、跨洋电缆铺设船和深海钻井船,并持有发动机部门所有驾驶执照。在航运生涯结束后,他于 2019 年加入美国国家运输安全委员会海事安全办公室担任工程运营调查员,并发起并参与了许多备受瞩目的重大海上事故调查,包括 Conception、Scandies Rose、Jackson County Park Marina 和 Titan。Barnum 先生拥有无限马力总工程师执照,这是他在商船生涯中获得的。Barnum 先生是缅因州人,与妻子和两个孩子住在缅因州中部地区。
文献中,较小的间距可预期较高的剪切强度。事实上,在之前关于飞秒激光粘合两层 PMMA 层的研究 [20] 中发现,每次激光通过产生的缺陷和空隙都会被下一条激光线产生的熔融材料填充。因此,增加连续激光线之间的重叠可提高焊接强度。相反,在我们的案例中,当激光束经过之前产生的激光修改线时,即当 h/w < 1 时,可以注意到剪切强度的降低。该结果可以归因于 PMMA 和硅之间的锚定“断裂”,这是由于激光在已经加工好的线上扫描造成的。另一方面,增加间距对剪切应力有负面但不太明显的影响。这可能
1 pfaffenwaldring 9,70569德国Stuttgart 2 Stuttgart Photonic Engineering(Scope)Stuttgart Stuttgart研究中心,Stuttgart,Stuttgart,Pfaffenwaldring 57,70569 Stuttgart,70569 Stuttgart,3 printtix optra, 70176德国Stuttgart 4生物材料与生物分子系统研究所(IBBS),Stuttgart大学,Pfaffenwaldring 57,70569德国Stuttgart,德国5 Stuttgart Research Center Systems Systems Biology(SRCSB) 15,70569德国斯图加特6第4物理学院(PI4),斯图加特大学,pfaffenwaldring 57,70569德国斯图特加特,德国7室内进程工程工程和等离子体技术研究所(IGVP) 12,70569德国斯图加特8 michael.heymann@bio.uni-stuttgart.de * andrea.toulouse@ito.uni.uni-stuttgart.depfaffenwaldring 9,70569德国Stuttgart 2 Stuttgart Photonic Engineering(Scope)Stuttgart Stuttgart研究中心,Stuttgart,Stuttgart,Pfaffenwaldring 57,70569 Stuttgart,70569 Stuttgart,3 printtix optra, 70176德国Stuttgart 4生物材料与生物分子系统研究所(IBBS),Stuttgart大学,Pfaffenwaldring 57,70569德国Stuttgart,德国5 Stuttgart Research Center Systems Systems Biology(SRCSB) 15,70569德国斯图加特6第4物理学院(PI4),斯图加特大学,pfaffenwaldring 57,70569德国斯图特加特,德国7室内进程工程工程和等离子体技术研究所(IGVP) 12,70569德国斯图加特8 michael.heymann@bio.uni-stuttgart.de * andrea.toulouse@ito.uni.uni-stuttgart.depfaffenwaldring 9,70569德国Stuttgart 2 Stuttgart Photonic Engineering(Scope)Stuttgart Stuttgart研究中心,Stuttgart,Stuttgart,Pfaffenwaldring 57,70569 Stuttgart,70569 Stuttgart,3 printtix optra, 70176德国Stuttgart 4生物材料与生物分子系统研究所(IBBS),Stuttgart大学,Pfaffenwaldring 57,70569德国Stuttgart,德国5 Stuttgart Research Center Systems Systems Biology(SRCSB) 15,70569德国斯图加特6第4物理学院(PI4),斯图加特大学,pfaffenwaldring 57,70569德国斯图特加特,德国7室内进程工程工程和等离子体技术研究所(IGVP) 12,70569德国斯图加特8 michael.heymann@bio.uni-stuttgart.de * andrea.toulouse@ito.uni.uni-stuttgart.depfaffenwaldring 9,70569德国Stuttgart 2 Stuttgart Photonic Engineering(Scope)Stuttgart Stuttgart研究中心,Stuttgart,Stuttgart,Pfaffenwaldring 57,70569 Stuttgart,70569 Stuttgart,3 printtix optra, 70176德国Stuttgart 4生物材料与生物分子系统研究所(IBBS),Stuttgart大学,Pfaffenwaldring 57,70569德国Stuttgart,德国5 Stuttgart Research Center Systems Systems Biology(SRCSB)15,70569德国斯图加特6第4物理学院(PI4),斯图加特大学,pfaffenwaldring 57,70569德国斯图特加特,德国7室内进程工程工程和等离子体技术研究所(IGVP)12,70569德国斯图加特8 michael.heymann@bio.uni-stuttgart.de * andrea.toulouse@ito.uni.uni-stuttgart.de
全国各地的年轻人现在可以通过年轻人的免费公交旅行计划获得免费的公共交通,我们正在支持个人和企业,以使更健康,更可持续的旅行选择。我们正在正面处理在气候紧急情况下运输的作用,同时意识到运输的重要作用在日常生活中继续发挥作用 - 确保我们能够获得教育,工作,培训和社交活动。随着许多家庭和企业面临着显着增加的生活成本,我们认识到运输支出构成了另一个(通常是不可避免的)费用。我们的目的是确保在全国范围内获得负担得起的,可访问和可持续的运输。我们知道,未来的挑战是巨大的,并且将私人汽车的使用和过渡减少到日常旅程的更多步行,骑行或骑自行车将对某些人面临更大的挑战。
基于我们在去年所证明的成功的单光子3D光场光刻学,我们将方法扩展到了飞秒3D光场光刻。与我们以前的单光子与紫外线LED光的工作相比,使用飞秒光和3D光场光刻中相关的两光子光吸收可以仅在3D空间中设计的Voxel位置周围固化光线剂。这样的两光子方案可以防止在到达设计的体素位置之前,在我们以前的基于UV LED LED的单光子3D灯场光谱术中观察到,在到达设计的体素位置之前,光孔物的光孔疗法固化。飞秒两杆3D光场光刻的实验方案从将均匀的飞秒激光脉冲传递到空间光调节器开始。设计的像素映射显示在空间灯调制器上,然后传递到Microlens阵列中以在自由空间中构造3D虚拟图像。通过使用显微镜系统在光构仪层中压缩3D虚拟图像,我们可以成功生成不同的显微镜3D模式,而无需像传统的3D光刻一样依赖扫描过程。在这项研究中,我们介绍了(a)为使用飞秒光的3D模式开发的(a)算法的初步结果,当使用飞秒光线时,该算法应满足其他约束,并且((b)具有fletoResists生成的3D模式,具有flemtosecond femtsecond thepsocond Photon 3D 3D Light Field Field Field Figh Figh Figh Figh Figh Field Littionshophation。
摘要 强近红外 (NIR) 激光脉冲与宽带隙电介质相互作用会在极紫外 (XUV) 波长范围内产生高次谐波。这些观测为固体中的阿秒计量提供了可能性,精确测量各个谐波相对于 NIR 激光场的发射时间将大有裨益。本文表明,当从氧化镁晶体的输入表面检测到高次谐波时,对 XUV 发射的双色探测显示出明显的同步性,这与块体固体中电子-空穴再碰撞的半经典模型基本一致。另一方面,源自 200 μ m 厚晶体出口表面的谐波双色光谱图发生了很大变化,表明传播过程中激光场畸变的影响。我们对 XUV 能量下亚周期电子和空穴再碰撞的跟踪与阿秒脉冲固态源的开发有关。